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A simple mathematical model of wool scouring
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Abstract

The transport of contaminants in a wool scour bowl is modelled by
advection diffusion equations. Averaging over the thin layers of wool
and the water beneath gives two coupled differential equations clearly
showing the contaminant interaction between the layers, and leading
to simple asymptotic relationships.
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1 Introduction

Wool scouring is the process of washing shorn wool to remove contaminants
such as grease and dirt. In many scour bowls the wool sits in a layer on top
of a tank of water and is propelled along the bowl, and agitated, by a series
of harrows. This agitation releases dirt which settles into a series of tanks
which are periodically drained, with the water cleaned and recycled. It is the
process of washing and settling which we consider here.

There have been only a few models of the traditional scour bowl, mostly
concentrating on the overall balance of dirt and grease in and out of the bowl
to find the average equilibrium concentration [3, 4]. A study group [1] con-
sidered a simple model of transport within the bowl by compartmentalising
the bowl into eight regions and balancing the fluxes of water, dirt and grease
in and out of these regions. However, a more complete model of the contam-
inant transport from the wool into the bowl is needed since different sized
materials settle at different rates; hence the first settling tanks collect larger
particles than the later tanks. A better understanding of how dirt moves
out of the wool and into these tanks can be used to operate the bowls more
efficiently. In particular we need to know how changes in wool layer depth,
wool velocity, input dirt concentrations, and input water velocity effect the
eventual accumulation of dirt, and the particle size distribution, in the tanks.

Figure 1 illustrates the portion of the scour bowl we model. The wool
is shown as the top layer, x ∈ [0, x0], with the harrows agitating a layer of
water of roughly the same depth, x ∈ [x0, 2x0]. Beneath this is a region where
the dirt settles, with transport governed less by agitation and more by the
downward settling velocity q and the cross flow fluid velocities vi, i = 1, 2, 3 .
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Figure 1: Schematic diagram of the wool mixing model, showing a thin
layer of wool of thickness x0 over a layer of water, being mixed by harrows.

Beneath this is shown the top of the pyramid settling tanks where no cross
flow occurs.

In this report we outline the governing advection diffusion equations and
non-dimensionalise them using typical parameter values. These equations are
then averaged by integrating over the depth of the layers to produce a set of
coupled ordinary differential equations for the averaged concentration in the
wool and the water. Solving for the concentration, with various asymptotic
relationships, illustrates the fundamental behaviour of the system.

2 Governing equations

The transport in the wool, mixing water and settling water layers are mod-
elled by the advection diffusion equation within each layer, i = 1, 2, 3 :

∂ci

∂t
= Di∇2ci − q

∂ci

∂x
− vi

∂ci

∂y
, (1)

where ci is the concentration in each layer (wool, washing zone, settling
zone), q is the settling velocity, vi is the horizontal transport velocity, Di is
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a diffusion-like term which represents the mixing action of the harrows, x is
the coordinate down the tank, from the top of the wool, through the various
layers, whereas y is the coordinate in the direction of wool motion. These
partial differential equations are based on simple mass-flux balances.

For simplicity we make several reasonable assumptions: the diffusivity
terms D are constants with D1 = D2 , since the wool and water mix together;
the diffusivity in the settling zone D3 ≈ 0 since little mixing occurs; the
horizontal velocities vary, v1 6= v2 but v2 = v3 ; the system has reached a
steady state so ∂c/∂t = 0 ; the wool layer and the washing water layer have
the same depth, x0; and, the diffusion in the y direction is assumed zero since
y0 � x0 and hence the D∂2c/∂y2 terms are small.

The boundary conditions are of no flux through the top surface and
matching fluxes between each layer. Thus[

D
∂c

∂x
− qc

]
x=0

= 0 , D+∂c+

∂x
= D−∂c−

∂x
, c+ = c− , (2)

where c+, c− denote the transition between each of the layers.

Equation (1) is non-dimensionalised with respect to the length of a sin-
gle tank y0 and the height of the wool layer x0 to give in non-dimensional
coordinates (x, y)

∂c1

∂y
= D∗∂

2c1

∂x2
− q∗

∂c1

∂x
, x ∈ (0, 1), (3)

∂c2

∂y
= αD∗∂

2c2

∂x2
− αq∗

∂c2

∂x
, x ∈ (1, 2), (4)

∂c3

∂y
= −αq∗

∂c3

∂x
, x > 2 , (5)

where the parameters are

D∗ =
Dy0

v1x2
0

, q∗ =
qy0

v1x0

, α =
v1

v2

. (6)
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We now drop the ∗ notation and assume all variables are non-dimensional
unless otherwise stated. Alternative scalings exist which reduce the number
of parameters to α and D∗/q∗, but the above scaling makes the transport
processes more obvious physically.

To simplify these further we integrate the equations over the depth of
each of the layers with notation

c̄1 =

∫ 1

0

c1 dx , c̄2 =

∫ 2

1

c2 dx ,

noting that the layers have non-dimensional depth one. Thus

∂c̄1

∂y
= D

(
∂c1

∂x
(x = 1)− ∂c1

∂x
(x = 0)

)
− q(c1(x = 1)− c1(x = 0)), (7)

∂c̄2

∂y
= αD

(
∂c2

∂x
(x = 2)− ∂c2

∂x
(x = 1)

)
− αq(c2(x = 2)− c2(x = 1)).(8)

The boundary conditions eliminate the terms at x = 0 . Similarly at x = 2 ,
the bottom of the water mixing layer, matching implies ∂

∂x
c2(x = 2) = 0 .

We now replace the derivative terms by their central difference

∂c1

∂x
(x = 1) = c2

(
x =

3

2

)
− c1

(
x =

1

2

)
,

and the average c̄1 ≈ c1(1/2) ≡ c1 and c̄2 ≈ c1(3/2) ≡ c2 . The concentration
term c1(x = 1) ≈ c1(x = 1/2) and c2(x = 2) ≈ c2(x = 3/2) . Hence

dc1

dy
= −(D + q)c1 + Dc2 , (9)

dc2

dy
= α(D + q)c1 − α(D + q)c2 . (10)

These equations, despite the averaging, have much of the expected behaviour.
The −(D + q)c1 term represents transport of contaminant from the wool to
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the water. The Dc2 represents the transport of dirt by mixing back to the
wool. Similarly the −(D + q)c2 term represents the loss of material from
the water, both to the wool, Dc2, and the water beneath, qc2. The equation
for c3 gives solution

c3(x, y) = c2

(
y − x− 2

qα

)
, (11)

which simply represents a diagonal transport of the material with the veloc-
ities, q and v3 away from the base of the washing water zone.

We have thus reduced the coupled partial differential equations to an
averaged set of coupled, linear, ordinary differential equations which have
classic phase plane type solutions which we explore in the next section.

3 Solutions

The solutions to the system (10) is simply found to be[
c1(y)
c2(y)

]
= av1e

λ1y + bv2e
λ2y (12)

where vi are the eigenvectors and λi are the eigenvalues of the matrix[
−(D + q) D
α(D + q) −α(D + q)

]
. (13)

Both the eigenvalues are real, negative, and unique for physical parameter
ranges. The constants a and b are found by application of the conditions
at y = 0 . Evaluating this solution is trivial in Matlab r© when written in
diagonalised form. In full the eigenvalues and eigenvectors are

λ =
−(D + q)

2

(
(1 + α)±

√
(1 + α)2 +

4αD

D + q
− α

)
, (14)
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Figure 2: Concentration in the wool c1(y) and water c2(y) showing rapid
and slow exponential responses.

and

v =

[
D

λ + (D + q)

]
. (15)

A typical solution is illustrated in Figure 2 showing the concentration,
c(y) versus distance y, in both the wool and the water for physically typical
values of q∗ = 0.3 , D∗ = 0.7 , α = 8 , c1(0) = 0.4 , and c2(0) = 0 . That is
dirty wool entering from the left along with clean water. The solution shows
the wool, c1, getting cleaner while the water, c2, initially gets dirtier (from
the wool) before eventually becoming cleaner. The solution also shows the
two exponential type behaviour, with both solutions having an initially fast
transient phase followed by a matched slow exponential decay governed by
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Figure 3: Phase plane of dirt concentration in wool, c1 and water, c2 as
y changes.

the leading eigenvector/eigenvalue.

In Figure 3 the solutions c1(y) and c2(y) from equation (12) are plotted
on a phase plane as c2 versus c1, with the same parameter set as Figure 1.
For example, the bold trajectory through c1 = 0.4 , c2 = 0 represents the
solution when c1(0) = 0.4 , c2(0) = 0 . As y changes c2 rapidly changes, as
shown in Figure 2 until y ≈ 0.6 . This is the effect of the second exponential
term in (12). After this point both c1 and c2 progress uniformly hence in
Figure 3 all trajectories head along the same straight line to the origin as the
slowly varying exponential term in (12) dominates. The slope of this latter
transition is given by the leading eigenvector in equation (15).
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One of our aims is to find simple solutions and to gain a better under-
standing of the system with this approximation. By making the assumption
that c2(y) ≈ c2(0) it is not hard to show that

c1(y) ≈ c1(0)e
−(D+q)y + c2(0)

D

D + q

(
1− e−(D+q)y

)
, (16)

which is valid for small values of (D+q)y. This clearly indicates the dominant
behaviour of the initial rapid decay exponential term exp[−(D + q)y] coming
from the most negative eigenvalue.

By considering a Taylor series in y we also obtain the asymptotic results
valid for small (D + q)y of

c1(y) ≈ c1(0)(1− (D + q)y) + c2(0)Dy , (17)

c2(y) ≈ c2(0) + α(D + q)c1(0)y − α(D + q)c2(0)y . (18)

This clearly shows the interaction between the elements, with the (D +
q)y term reducing the concentration in c1 and increasing it in c2.

If the diffusivity term is small, D ≈ 0 , equivalent to no agitation of the
wool, then the system reduces easily to

c1(y) = c1(0)e
−qy , (19)

c2(y) = c1(0)
α

α− 1
e−qy +

(
c2(0)−

α

α− 1
c1(0)

)
e−αqy , (20)

for α 6= 1 . Note that for α > 1 , the usual physical case, for large y[
c1

c2

]
→
[

α− 1
α

]
c1(0)

α− 1
e−qy , (21)

showing that the equivalent slope on the phase plane, Figure 3, is α/(α− 1)
which is not affected by settling q. That is, the relative concentration of
c1 and c2 are dominated by the velocities α. For α = 1 the c2(y) equation is
modified by

c2(y) = (c1(0)qy + c2(0))e−qy . (22)
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Importantly we calculate the maximum value of c2(y) since, as shown
in Figure 2, for typical parameters, the concentration in the water rises to
a maximum before dropping. This maximum is then transported down to
the settling tanks by the solution to c3, equation (11), effectively giving the
tank which will clog the most. Thus differentiation of the c2 solution in
equation (22) gives a maximum at

ymax =
1

1− αq
ln

(
c1(0)

αc1(0) + (1− α)c2(0)

)
(23)

for α 6= 1 , so long as the solution exists, and for α = 1

ymax =
c1(0)− c2(0)

c1(0)q
, c1(0) 6= 0 . (24)

One can then use these equations to both predict which bowl will fill with
settling contaminant first as well as allowing operators to vary input param-
eters (wool speed, cross flow velocities) to obtain a desired settling outcome.
A similar, but more complicated, expression can be found for the full eigen-
vector solution in equation (12).

Other, reasonably physical, simplifications occur. For example if v2 = 0 ,
then the term v2∂c2/∂y = 0 and so c1 = c2 giving

c1(y) = c1(0)e−qy ; (25)

that is, the concentration in the wool is independent of the washing action as
material diffuses out then back into the wool. If q = 0 which is appropriate
for neutrally buoyant grease, rather than dirt, the solution simplifies to[

c1(y)
c2(y)

]
=

αc1(0) + c2(0)

1 + α

[
1
1

]
+

c1(0)− c2(0)

1 + α

[
1
−α

]
e−D(1+α)y . (26)

showing that both the wool and water diffuse to the same value. Naturally, if
c1(0) = c2(0) , then there is no y dependence. Assuming that the exponential
term decays fast enough, this means that the grease concentrations in the
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Figure 4: Phase plane of grease concentration in wool c1 and water c2 as
y changes for q = 0 .

water at the end of the bowl, where grease is removed to make lanolin, are
solely given by

c =
αc1(0) + c2(0)

1 + α
(27)

with little dependence on D or the dimensions of the tank. This latter result
is shown in Figure 4 as a phase plane, with the same parameters as Figures 2
and 3 apart from the settling velocity being q = 0 . The bold trajectory again
shows concentrations starting from c1(0) = 0.4 , c2(0) = 0 . As y increases
the concentrations tend linearly to the first terms in equation (26) as the
second exponential term dies away.
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Figure 5: Concentration in the wool and water at a fixed y with varying
wool velocity.
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In many of the expressions above a decay term like exp[−(D + q)y] ap-
pears. In dimensional coordinates this is

exp

(
−(D + qx0)y

v1x2
0

)
(28)

showing that the decay behaviour is faster (in y) if the depth of the wool x0

is small or the velocity v1 is small. If the depth of wool x0 gets too large,
then the system does not reach its final asymptotic state before reaching
the end of the bowl. However, in this limit of large x0 the averaging over
the width of the layer becomes less valid and an x dependent model needs
to be considered. Figure 5 shows this behaviour for changing v1, that is
illustrating c1(y = 0.5), c2(y = 0.5) from equation (12) in dimensional form
as wool velocity v1 changes. This figure uses the same parameters as early
models with y = 0.5 (corresponding to y = 1m physically). This figure also
shows results from a numerical simulation [2] which uses finite differences to
solve the full time-dependent equations for an entire scour bowl of four tanks,
including settling and drainage down the full length of the settling tanks. In
contrast, the simplified model here only studies the region near the wool. As
v → 0 the concentration drops to zero, since this is equivalent to stationary
wool with all the dirt settles out for small y hence being clean at y = 0.5 .
As v →∞ the wool is moving so fast that at the point y = 0.5 the wool has
not had time for material to settle out and so the concentration approaches
the initial condition of c1(0) = 0.4 .

4 Conclusion

The washing action of a wool in the top of a wool scour bowl can be modelled
well by using a simple integral averaging of the governing advection diffu-
sion equations. This leads to a simple set of coupled ordinary differential
equations which model the concentration moving between the wool and the
water, with an initial exponential phase, mostly governed by an exponential
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decay exp[−(D+q)y] term, allowing the wool and water to come to a pseudo
equilibrium state which then slowly decays exponentially with both the wool
and water decaying in phase.
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