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Dynamics of a cable with an attached sliding
mass

P. Williams∗

(Received 25 October 2005; revised 23 June 2006)

Abstract

I describe the development of a three dimensional numerical model
of a cable system with an interacting sliding mass. The cable is mod-
elled using a lumped parameter approximation, where the cable is
discretised into a collection of viscoelastic point mass elements artic-
ulated by frictionless hinges. The sliding mass is modelled as a point
mass which is free to move in all three dimensions. The dynamics of
the sliding mass are formulated to take into account the constraint
provided by the cable, and incorporates a variety of active forces in-
cluding friction and air drag.
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1 Introduction

Cable systems arise in many practical applications, such as bridges, under-
water systems, aircraft decoy systems, and tethered satellite systems. Meth-
ods for approximating the cable motion and its equilibria have been studied
for many years. Cable-body systems have been modelled using continuum
models based on partial differential equations for strings, as well as lumped
parameter representations. In complex applications, the lumped parameter
representation is usually the preferred choice for detailed simulation work [1].
Although continuum models are typically considered more accurate, the dis-
tinction between the two types of models becomes blurred during numerical
simulation when partial derivatives are approximated by means of a finite
difference method, or when the system motion is expanded in terms of ad-
missible functions. The lumped parameter representation is the most conve-
nient choice for a variety of cable systems and will be employed in this work.
One advantage of the lumped parameter representation is that geometric
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nonlinearities are inherently captured, and situations involving possible loss
of tension are easily incorporated.

We focus on the case where a cable is carrying a load which is free to
move due to the presence of applied external forces. There are a variety
of useful applications where such a model is needed for analysis, such as
cable trams, rocket propelled trolleys, or transport of cargo between two
ships. Dynamical models of such scenarios have been developed in related
work. Wu and Chen [2] used an updated Lagrangian and finite element
method to model the cable dynamics with a moving mass particle. They
obtained numerical solutions using direct Newmark integration. Al-Qassab
et al. [3] derived the equations of motion for a cable carrying a moving particle
using Hamilton’s principle. Aerodynamic drag and frictional forces were
neglected. Tadjbakhsk and Wang [4] also studied the vibrations of a cable
with an accelerating mass, but took into account friction and a propulsive
force applied to the trolley. They used Galerkin’s method to discretize the
dynamics. An alternative approach based on a finite element formulation
was presented by Zhou et al. [5], who introduced a special “sliding” element
to capture the effect of the cable sliding over a point. Friction was ignored
in the model, and it was applied in the simulation of a parachute system.

I present a cable model with a sliding mass using a lumped parameter
representation. First, the general representation of the cable model is given.
The method for incorporating the sliding mass is developed so that the model
can be applied with or without a sliding mass. A range of realistic forces on
the slider and cable are included, such as air drag, friction, and damping. A
simple method for determining the “active” cable segment is outlined, which
is used at each time step to locate the element affected by the sliding mass.
Finally, numerical simulations illustrate the versatility of the model.
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Figure 1: Lumped parameter representation of cable object.

2 Mathematical model for cable

For the purposes of simplicity, the cable model is derived for a single cable
object. The cable is modelled by physically discretising it into a sequence of
point mass elements interconnected via viscoelastic springs, as shown in Fig-
ure 1. It is assumed that the cable is perfectly flexible, and as a consequence,
the point masses act as frictionless hinges. The elements are numbered from 0
at the “free” end, through to n at the “fixed” end. Note that for the results
in this paper, the 0th element is fixed. However, in general the 0th mass may
be subject to its own dynamical equations or specified kinematic motion.
Furthermore, the origin of the cable coordinate system (0, X, Y, Z) may be
either fixed or moving with a prescribed motion.
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The dynamical equations for the cable are derived via Newton’s second
law using the inertial coordinates of the masses. Hence

mj r̈j = Fs
j + Fd

j + Fg
j + Fdrag

j , j = 1, . . . , n , (1)

where rj = xji + yjj + zjk , the elemental mass of the jth cable segment is

mj =
1

2
ρA

(
Lsj+1

+ Lsj

)
, j = 1, . . . , n , (2)

ρ is the density of the cable material, A is the cross-sectional area, and Lsj
is

the unstrained length of the jth cable segment. The external forces on the
right-hand side of Equation (1) are due to tension/spring forces, damping,
aerodynamic drag, and gravity, denoted by the superscripts s, d, drag, and g,
respectively. These forces are defined in the following subsections.

2.1 Tension forces

Consider the strain in the jth element,

εj =

{ (
|qj| − Lsj

)
/Lsj

, |qj| ≥ Lsj
,

0 , |qj| < Lsj
,

(3)

where Lsj
is the unstrained segment length. The tension force is defined by

Hooke’s law as Tj = EAεj , and hence the total force on the jth mass is

Fs
j = Tj+1

qj+1

|qj+1|
− Tj

qj

|qj|
, (4)

where qj = (xj − xj−1) i + (yj − yj−1) j + (zj − zj−1)k .

2.2 Damping forces

The damping forces in the cable are assumed to be proportional to the strain
rate. Express the length of the jth segment as

lj = Lsj
(1 + εj) . (5)
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Taking the derivative of Equation (5) and rearranging gives

ε̇j =
l̇j

Lsj

−
L̇sj

Lsj

(1 + εj) . (6)

Using l̇j = q̇j · qj/ |qj| and lj = |qj| , the strain rate

ε̇j =
1

Lsj

√
(xj − xj−1)

2 + (yj − yj−1)
2 + (zj − zj−1)

2
×

×
[
(xj − xj−1) (ẋj − ẋj−1) + (yj − yj−1) (ẏj − ẏj−1)

+ (zj − zj−1) (żj − żj−1)
]

−
L̇sj

L2
sj

√
(xj − xj−1)

2 + (yj − yj−1)
2 + (zj − zj−1)

2 . (7)

Hence, the damping force is defined by

Fd
j = Dj+1

qj+1

|qj+1|
−Dj

qj

|qj|
, (8)

where

Dj =

{
Cε̇j , |qj| ≥ Lsj

,
0 , |qj| < Lsj

,
(9)

and C is the damping constant of the cable material.

2.3 Aerodynamic forces

The aerodynamic drag forces on the cable are calculated by ignoring the skin
friction component of the drag. The component of the normal velocity for
the jth mass is

vn
j = vj −

1

2
vj ·

(
qj

|qj|
+

qj+1

|qj+1|

)
, (10)
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which averages the projected velocity components based on the orientation of
the adjacent cable segments. The drag force based on the normal component
of velocity is

Fdrag
j = −1

2
ρair

j Lsj
dCDvn

j

∣∣vn
j

∣∣ , (11)

where d is the cable diameter, CD is the normal drag coefficient (taken to
be 1.1), and ρair

j is the air density at the jth mass.

2.4 Gravitational forces

A uniform gravitational field in the vicinity of the cable provides the force

Fg
j = −mjgk . (12)

3 Sliding mass element

In order to include the effect of a freely sliding mass, it is necessary to treat
the slider ms as an independent particle governed by

msr̈s = FN
s + Ff

s + Fg
s + Fdrag

s , (13)

where ms is the mass of the sliding particle, and the external forces acting
on the particle are due to the normal reaction of the cable on the particle,
friction forces, gravity and drag, denoted by the superscripts N, f, g and drag,
respectively. For simplicity, the particle is assumed to be in contact with the
cable at a point so that the slope of the cable across the particle’s position
is discontinuous in the general case. For convenience, the “active” cable
segment is defined to be the one that the slider is currently in contact with.
Figure 2 shows a general depiction of an active sliding element. To model the
reaction of the cable on the slider and the friction forces, a normal tangential
coordinate system is employed (n, t,kN).
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Figure 2: Sliding mass element.

The osculating plane of the normal tangential frame is defined via the
vector kN = p1 × p2 . The normal vector to the cable at the particle’s
position is defined to bisect the angle between the two cable segments

n =
1

2

[
kN × p1

|kN × p1|
+

kN × p2

|kN × p2|

]
. (14)

Finally, a vector tangent to the cable at the contact point of the particle is
defined as

t =
kN × n

|kN × n|
. (15)

The presence of the slider on the active segment deforms the segment to
produce the modified tension value

Ts =
EA

L∗
sj

(
|p1|+ |p2| − L∗

sj

)
. (16)

The tension is assumed to be constant across the active cable segment, and
the effect of friction is applied to the adjacent lumped masses. The modified
tension value replaces the tension force applied to the jth and (j−1)th masses
as given in Equation (4).

The normal force of the cable on the slider is determined by the compo-
nents of the tension force

T1 = −Tsp1/ |p1| , T2 = Tsp2/ |p2| , (17)
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projected onto the direction of the normal vector, that is,

FN
s = (T1 · n + T2 · n)n .

Note: if the tension becomes zero, no normal force is exerted on the slider.

Frictional forces are assumed to act parallel to the tangent vector t. De-
fine the sum of external forces acting on the slider (except the normal force
and friction) as Fext. The maximum frictional force that can be exerted by
the cable is governed by Fmax ≡ µk

∣∣FN
s

∣∣ . Cases where the slider is in motion
along the tangent direction and when it is stationary must be distinguished.
In general, the friction force is governed by

Ff
s =

{
−sign (vs · t) Fmaxt , |Fext · t| ≥ Fmax ,
−sign (vs · t) |Fext · t| t , |Fext · t| < Fmax .

(18)

The direction of the frictional force in the case where the slider has no velocity
component along the cable tangent direction is governed by the sign of the
projection Fext · t . The frictional forces of the slider on the cable are equal
and opposite, and are applied to the adjacent lumped masses according to

Ff
j =

|p2|Ff
s

|p1|+ |p2|
, Ff

j−1 =
|p1|Ff

s

|p1|+ |p2|
. (19)

Note that these forces are applied by modifying the active tension forces on
the cable in Equation (4).

3.1 Searching algorithm

As the sliding mass moves along the cable, the active cable segment continu-
ally changes and singularities in some of the governing equations occur. For
example, consider the case where the slider approaches the position of one of
the lumped masses representing the cable in Equation (14). In such a circum-
stance, one of the denominators in the expression approaches zero. Hence
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care must be taken during implementation of the algorithm to monitor the
proximity of the slider to the discrete cable elements. Defining a proximity
distance, it is a simple matter to adjust the definition of the appropriate p
to be defined as along the line from ms to mj−2 or mj+1, depending on its
position. When such a situation occurs, it is necessary to adjust the value
of L∗

sj
in Equation (16) accordingly.

An effective strategy for determining the active cable element for most
practical scenarios is to first compute the values of p1 and p2 for every
element, assuming no a priori knowledge of the active cable element from a
previous time step. The active cable element is taken to be the one satisfying
minj

∣∣|p1j|+ |p2j| − Lsj

∣∣ . This procedure could fail if the cable has loops or
if two segments are very close to each other. However, numerical experience
suggests that the procedure is adequate for typical sliding configurations.

4 Numerical results

To demonstrate the effectiveness of the model, an example of an inclined cable
is used [4]. Note that the model was first validated using a much simpler sim-
ulation [5]. The following simulation properties are used: ρ = 113575 kg/m3,
L = 3900m, d = 5mm, C = 50Ns, n = 100 , E = 70GPa, ms = 10193.6 kg.
Simulations are performed with and without friction, where µk = 0.1 for the
cases with friction. The left support is located at the coordinates (0, 0, 0),
whereas the right support is located at (4500, 0,−750)m. The initial condi-
tions of the cable are the static equilibrium conditions for the cable, deter-
mined by a nonlinear root-finding method for zero velocity and acceleration
of the cable masses. The initial position of the slider is 0.1% of the distance
along the cable element closest to the left support. A variable order, variable
step, stiff integrator scheme integrates the equations of motion. Note that
not all parameters were given in [4], but the initial configuration tension at
the left support of 252 kN correlates well with the 250 kN used in [4].
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Figure 3: Rocket propelled trolley simulation [4], snapshot at t = 14 sec.



4 Numerical results C97

0 1000 2000 3000 4000
−1400

−1200

−1000

−800

−600

−400

−200

0

x (m)

z 
(m

)

Static shape

Figure 4: Dynamic and static cable shapes during sliding mass motion
shown at 2 sec intervals (60 sec total).
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Figure 5: (a) Tension at right support; (b) x-coordinate of sliding mass;
(c) z-coordinate of sliding mass.
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Numerical results are shown in Figures 3 to 5. Figure 3 shows a sim-
ulation of a rocket-propelled trolley with an constant thrust force applied
tangential to the cable (thrust acceleration = 17.64m/s2). The horizontal
and vertical distances of the slider correspond well with the results in [4].
There is a significant kink in the cable at the slider position, which would
need a large number of modes to capture adequately using an expansion in
admissible coordinates. Figure 4 shows the static equilibrium shape of the
cable, together with the dynamic shape at various instants of time following
the release of the slider without any thrust applied and µk = 0.1 . Evidently
the slider has a significant impact on the cable shape, mostly due to the
ratio of the sliding mass to cable mass. Figure 5 shows the time history of
the cable tension at the right support, as well as the in-plane coordinates of
the slider. Figure 5(a) shows that the tension at the right support remains
constant initially due to the time lag caused by the finite wave propagation
along the cable. The motion of the slider causes significant fluctuations in
the cable tension at the right support, with a maximum amplitude of 158 kN
above that of the static cable tension.

5 Conclusions

A dynamical model for a cable with a sliding particle was derived for general
motion of the sliding mass. The model is applicable to a wide range of
operating conditions and is relatively easy to implement. The method for
incorporating the sliding element easily captures the kink in the cable, as
well as friction effects. Numerical results show the effectiveness of the model
to capture the complex cable dynamics.
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