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A Gauss–Lobatto quadrature method for
solving optimal control problems
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Abstract

This paper proposes a direct approach for solving optimal con-
trol problems. The time domain is divided into multiple subdomains,
and a Lagrange interpolating polynomial using the Legendre–Gauss–
Lobatto points is used to approximate the states and controls. The
state equations are enforced at the Legendre–Gauss–Lobatto nodes in
a nonlinear programming implementation by partial Gauss–Lobatto
quadrature in each subdomain. The final state in each subdomain
is enforced by a full Gauss–Lobatto quadrature. The Bolza cost
functional is naturally approximated using Gauss–Lobatto quadrature
across all subdomains.
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1 Introduction

So-called direct methods have become extremely popular for solving optimal
control problems, particularly in aerospace applications [1]. Trajectory opti-
mization problems often involve both state and control constraints, as well
as initial and terminal constraints. Two classes of solution methods are gen-
erally acknowledged for solving such problems: indirect and direct. Indirect
methods are based on solving a two-point boundary value problem (tpbvp)
that arises by applying Pontryagin’s Maximum Principle (pmp) to the orig-
inal problem. The major difficulty in solving tpbvps lies in the fact that
the problem is ill-conditioned due to the extreme sensitivity of the costate
dynamics. Generally, very good initial guesses and long computation times
are required to obtain feasible solutions using these methods, particularly
when there are state constraints. Direct methods, on the other hand, re-
tain the structure of the original problem and discretize it directly. These
methods have been termed direct collocation [2] or direct transcription [3].
The feature of these approaches is that both the states and controls are
discretized at a selected number of collocation points or nodes. The state
equations may be enforced by implicit integration rules such as the trape-
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zoidal or Simpson rule [2], explicit integration rules such as Runge–Kutta [4],
or by approximating the state history between the collocation points with
Hermite interpolating polynomials and forcing the derivative of the poly-
nomial to be equal to the state equations at internal collocation points [5].
Herman and Conway [5] showed that the latter method is equivalent to us-
ing Legendre–Gauss–Lobatto (lgl) quadrature rules for a particular choice
of internal collocation points. The commonality in these methods is that the
system dynamics are enforced only locally between the collocation points.

More recently, pseudospectral methods [6, 7] have been used for direct
trajectory optimization. Contrary to the previous methods, pseudospectral
methods are global in nature and approximate the entire state history with
global Lagrange interpolating polynomials. The state equations are enforced
at each of the nodes by differentiating the approximating polynomial and
forcing it to be equal to the state equation evaluated at that point. Due
to the global nature of the approximating polynomial, the differentiations
can be achieved efficiently by employing a differentiation matrix. Spectral
methods have been used widely for solving fluid dynamics problems and other
boundary value problems [8].

In this paper, some of the above ideas are combined to form a pseudospec-
tral method based purely on quadrature approximations of the underlying
dynamical equations and cost function. A discretisation based on quadrature
retains the advantage that linear differential equations are transformed into
linear algebraic equations, which is not true of most typical direct methods.
This allows linear quadratic optimal control problems to be solved without
iteration. The quadrature-based approach is detailed in the following, and
a numerical example is presented to illustrate some of the features of the
method.
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2 Optimal control problem

Consider the problem of finding the four-tuple {x(t), u(t), t0, tf} to minimise
the cost function

J = E [x(tf ), tf ] +

∫ tf

t0

L[x(t), u(t), t] dt , (1)

subject to the nonlinear state equations

ẋ(t) = f(x(t), u(t), t) (2)

the end-point conditions

e0
L ≤ e0[x(t0), t0] ≤ e0

U , (3)

ef
L ≤ ef [x(tf ), tf ] ≤ ef

U , (4)

the mixed state-control path constraints

gL ≤ g[x(t), u(t), t] ≤ gU , (5)

and box constraints

xL ≤ x(t) ≤ xU , uL ≤ u(t) ≤ uU , (6)

where x ∈ Rnx are the state variables, u ∈ Rnu are the control inputs, t ∈ R
is the time, E : Rn0 × R → R is the Mayer component of cost function, that
is, the terminal, non-integral cost in Equation (1), L : Rnx × Rnu × R → R
is the Bolza component of the cost function, that is, the integral cost in
Equation (1), e0

L ∈ Rnx × R → Rn0 and e0
U ∈ Rnx × R → Rn0 are the lower

and upper bounds on the initial point conditions, ef
L ∈ Rnx × R → Rnf

and ef
U ∈ Rnx ×R → Rnf are the lower and upper bounds on the final point

conditions, and gL ∈ Rnx×Rnu×R → Rng and gU ∈ Rnx×Rnu×R → Rng are
the lower and upper bounds on the path constraints. The solution of general
optimal control problems requires the application of the pmp to construct
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the necessary conditions for optimality. The pmp essentially requires that
the control Hamiltonian, defined as a function of “undetermined” covectors,
be minimized.

Instead of employing the pmp to transform the problem into the higher di-
mensional state-costate space and using a discretisation method to transcribe
the problem into a finite parameter set, it is far simpler to first transcribe
the problem and apply the Karush–Kuhn–Tucker (kkt) conditions to the
discrete problem. Nowadays, the kkt conditions are applied via nonlinear
programming software without direct intervention of the user.

In the most general case (omitting switches in the states and/or vector
field), it is convenient to divide the time domain into a series of M subdo-
mains so that the time coordinates are

tj ∈ Ij = [t0 + (tf − t0) (j − 1) /M, t0 + (tf − t0) j/M ], j = 1, . . . ,M (7)

in each subdomain. The fundamental idea behind using a Gauss–Lobatto
quadrature discretisation is that the vector field is approximated by an
Nth degree Lagrange interpolating polynomial

f(t) ≈ fNj(t), t ∈ Ij . (8)

For optimal interpolation approximation (in the l2-norm sense), the Lagrange
interpolating polynomials are expanded using values of the vector field at a
set of Legendre–Gauss–Lobatto (lgl) points. The lgl points are defined
on the interval [−1, 1] and correspond to the zeros of the derivative of the
Nth degree Legendre polynomial, LN(τ), as well as the end points −1 and 1.
The Legendre polynomials are orthogonal to a unit weight function over the
interval τ ∈ [−1, 1]. The computational domain is related to the time domain
by the affine transformation

tj =
[
(tf − t0) τ j/M + 2t0 + (tf − t0) (2j − 1) /M

]
/2 , j = 1, . . . ,M . (9)

In each subdomain, there are Nj +1 lgl points. The Lagrange interpolating
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polynomials take on the following form

fNj(tj) =

Nj∑
k=0

f j
kφ

j
k(τ

j) , (10)

where tj = t (τ j) because of the shifted computational domain. The Lagrange
polynomials satisfy φj

k(τ
j
i ) = δki , and hence the coefficients of the polynomial

used in the expansion of the vector field take on their “physical” values at the
lgl points. The Lagrange polynomials in Equation (10) may be expressed
in terms of the Legendre polynomial basis functions

φj
k(τ) =

(τ 2 − 1) L′
Nj

(τ)(
τ − τ j

k

)
Nj (Nj + 1) LNj

(τ j
k)

, k = 0, . . . , Nj ; j = 1, . . . ,M .

(11)
The vector field consists of values of the states and controls evaluated at
the lgl points, and so the states and controls can themselves be considered
as approximated via Lagrange polynomials similar to Equation (10). By
integrating Equation (10) from the beginning of each subdomain, one obtains

xj
k = xj

0 + ξj

∫ τk

−1

Nj∑
i=0

φj
i

(
τ j
)
f j

i dτ j , k = 1, . . . , Nj ; j = 1, . . . ,M , (12)

where ξj = dtj/dτ j = (tf − t0) /(2M) . Define the entries of the N × (N +1)

integration matrix as Ik−1,j
∆
=
∫ τk

−1
φj(τ

∗) dτ ∗ , and noting that the coefficients

f j
i are constant, allows Equation (12) to be expressed as

xj
k = xj

0 + ξj

Nj∑
i=0

Ik−1,if
j
i , k = 1, . . . , Nj ; j = 1, . . . ,M . (13)

This discretisation may be recognised as a Gauss–Lobatto quadrature ap-
proximation to the state equations. The last row of the integration matrix
corresponds to a full Gauss–Lobatto quadrature across the jth subdomain.
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The discretisation of the cost function is performed using the full quadrature
as

J N = E(xM
NM

, tf ) +
M∑

j=1

ξj

Nj∑
i=0

L(xj
i , u

j
i , t

j
i )w

j
i , (14)

where the Gauss–Lobatto quadrature weights are

wj
k =

2

Nj(Nj + 1)

1[
LNj

(
τ j
k

)]2 , k = 0, . . . , Nj ; j = 1, . . . ,M . (15)

The end point constraints, path constraints, and box constraints are easily
expressible in terms of the discrete decision variables

Z
∆
=
(
x1

0, . . . ,x
1
N1

, . . . ,xM
1 , . . . ,xM

NM
, u1

0, . . . ,u
1
N1

, . . . ,uM
1 , . . . ,uM

NM
, t0, tf

)
.

(16)
Note that the states and controls are implicitly constrained to be continuous
across each subdomain so that xj

Nj
= xj+1

0 , and the extra variables are

eliminated from the decision vector in Equation (16).

To illustrate an elegant property of the discretisation, consider the kkt
conditions for the discretised problem. Note that a simplified version of the
general problem is considered here for the sake of brevity (a global quadrature
is assumed, and constraints are omitted).

The augmented cost is

J̄ N = E (xN) + ν̃>
0 e0 (x0) + ν̃>

f ef (xN) + ξ
N∑

k=0

Lk (xk, uk, tk) wk

+
N∑

k=1

λ̃
>
k

(
ξ

N∑
j=0

Ik−1,jf j (xj, uj, tj) + x0 − xk

)
,

(17)

where ν̃0, ν̃f , and λ̃k are the kkt multipliers. The dual kkt conditions are
obtained by taking partial derivatives of Equation (17) with respect to the
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unknown parameters

∂J̄ N

∂ui

= ξ
∂Li

∂ui

wi + ξ
N∑

l=1

Il−1,i

(
∂f i

∂ui

)>

λ̃l = 0 , i = 0, . . . , N , (18)

∂J̄ N

∂xi

= ξ
∂Li

∂xi

wi + ξ
N∑

l=1

Il−1,i

(
∂f i

∂xi

)>

λ̃l − λ̃i = 0 ,

i = 1, . . . , N − 1 , (19)

∂J̄ N

∂x0

=

(
∂e0

∂x0

)>

ν̃0 + ξ
∂L0

∂x0

w0

+ ξ
N∑

l=1

Il−1,0

(
∂f 0

∂x0

)>

λ̃l +
N∑

l=1

λ̃l = 0 , (20)

∂J̄ N

∂xN

=
∂E

∂xN

+

(
∂ef

∂xN

)>

ν̃f + ξ
∂LN

∂xN

wN

+ ξ
N∑

l=1

Il−1,N

(
∂fN

∂xN

)>

λ̃l − λ̃N = 0 . (21)

Now define

Λ̃k =
N∑

l=1

Il−1,kλ̃l/wk , Λ̄0 = −
(

∂e0

∂x0

)>

ν̃0 , Λ̄N =
∂E

∂xN

+

(
∂ef

∂xN

)>

ν̃f .

Substitution into the control conditions gives

∂Li

∂ui

+ Λ̃i

(
∂f i

∂ui

)>

= 0 , i = 0, . . . , N , (22)

which corresponds to a point-wise discretisation of the control conditions by
application of the pmp. By rearranging and substituting subsequent equa-
tions with the remaining conditions,

Λ̄0 − ξ
N∑

k=0

wk

[
∂Lk

∂xk

+ Λ̃k

(
∂fk

∂xk

)>
]

= Λ̄N , (23)



2 Optimal control problem C109

which is recognised as a Gauss–Lobatto quadrature approximation to the
continuous costate equation, including the boundary conditions. Note that
a formal proof that the mapped covectors Λ̃k =

∑N
l=1 Il−1,kλ̃l/wk satisfy the

same set of equivalent necessary conditions for optimality as the continuous
time pmp conditions is beyond the scope of this work, but it can be seen that
the mapped covectors derived above provide a good approximation to the
continuous multipliers. This is supported by a range of numerical examples,
including one presented in the numerical results section.

2.1 Integration matrix

The general expression for the Lagrange interpolating polynomial is

φk (τ) =
g (τ)

(τ − τk) g′ (τk)
, (24)

and the entries of the integration matrix are

Ii−1,k =

∫ τi

−1

φk(τ) dτ . (25)

By definition of the lgl nodes,

g (τ) =
(
τ 2 − 1

)
L′

N (τ) . (26)

It may also be shown that

(
τ 2 − 1

)
L′

N (τ) =
N (N + 1)

(2N + 1)
[LN+1 (τ)− LN−1 (τ)] . (27)

Hence, by the properties of the Legendre polynomial,

g′ (τ) =
N (N + 1)

(2N + 1)

[
L′

N+1 (τ)− L′
N−1 (τ)

]
= N (N + 1) LN (τ) . (28)
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Using the Christoffel–Darboux identity [9]

Bm =
m∑

k=0

Lk (τ) Lk (z)

γk

=
Lm+1 (τ) Lm (z)− Lm (τ) Lm+1 (z)

Am+1γm (τ − z) /Am

, (29)

where for the Legendre polynomials,

γm =
2

2m + 1
, Am =

(2m)!

2m (m!)2 , and hence
Am+1γm

Am

=
2

m + 1
;

also

BN (τ, z) +
N + 1

N
BN−1 (τ, z) =

(2N + 1)

2N

[
g (τ) LN (z)− LN (τ) g (z)

τ − z

]
.

(30)
Substituting z = τk , where τk is a zero of g (τ), we are led to

BN (τ, τk) +
N + 1

N
BN−1 (τ, τk) =

(2N + 1)

2N

[
g (τ) LN (τk)

τ − τk

]
. (31)

Integrating the rhs of Equation (31) leads to∫ τi

−1

(2N + 1)

2N

[
g (τ) LN (τk)

τ − τk

]
dτ

=
(2N + 1)

2N
Ii−1,kg

′ (τk) LN (τk)

=
(2N + 1)

2
(N + 1) [LN (τk)]

2 Ii−1,k . (32)

Making use of the identity

LN+1 (τ)− LN−1 (τ) = (2N + 1)

∫ τ

−1

LN (τ ∗) dτ ∗ (33)

to integrate the lhs of Equation (31) leads to, for example for the first term,∫ τi

−1

BN (τ, τk) dτ =

∫ τi

−1

N∑
j=0

Lj (τk) Lj (τ)

γj

dτ
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= 1
2

N∑
j=0

Lj (τk) [Lj+1 (τi)− Lj−1 (τi)] . (34)

Finally, the lhs∫ τi

−1

[
BN (τ, τk) +

N + 1

N
BN−1 (τ, τk)

]
dτ

=

(
2N + 1

2N

){
1 + τi +

N∑
j=1

Lj (τk) [Lj+1 (τi)− Lj−1 (τi)]

}
,

(35)

which makes use of

[LN+1 (τi)− LN−1 (τi)] = 0 , (36)

and
L0 (τk) [L1 (τi)− L−1 (τi)] = τi + 1 . (37)

Rearranging the expressions in Eqs. (32) and (35) gives

Ii−1,k =
wk

2

{
1 + τi +

N∑
j=1

Lj (τk) [Lj+1 (τi)− Lj−1 (τi)]

}
,

i = 1, . . . , N ; k = 0, . . . , N . (38)

The Legendre–Gauss–Lobatto quadrature weights are recovered for τi = 1 .
This formula has been validated by using a modified Chebyshev moments
method to solve for each row of the integration matrix numerically.

The lgl nodes, which are theoretically the roots of the derivative of the
Nth degree Legendre polynomial, including the end points, should not be
computed by a root-finding algorithm. It is much more accurate and efficient
to compute them as the eigenvalues of a modified tridiagonal Jacobi matrix
as discussed by Gautschi [10] for the general Jacobi case.
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Figure 1: Numerical results for Van der Pol problem, (—) indirect, (· · · )
direct
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3 Numerical example

To illustrate the features of the method, consider a constrained Van der Pol
oscillator problem. The control problem is to minimise the cost

J = 1
2

∫ 5

0

(
x2

1 + x2
2 + u2

)
dt , (39)

subject to the constraints

ẋ1 = x2 , ẋ2 = −x1 +
(
1− x2

1

)
x2 + u , u(t) ≤ 0.75 , (40)

and the boundary conditions x1(0) = 1 , x2(0) = 0 , x1(5) = −1 , x2(5) = 0 .
This is a fixed-time, constrained optimal control problem with initial and
terminal constraints (two-point boundary value problem). This problem is
solved using an indirect quasilinearisation method as well as the proposed
method with one interval and N = 50 . The D-form of the Lagrangian of the
Hamiltonian for this problem is

L = 1
2

(
x2

1 + x2
2 + u2

)
+ λ1x2 + λ2

[(
1− x2

1

)
x2 − x1 + u

]
+ µ (u− 0.75) ,

which allows the necessary conditions to be determined in a straightforward
manner. The direct problem is solved using the sequential quadratic pro-
gramming software snopt. Numerical results are shown in Figure 1. There
is excellent agreement in both the primal and dual solutions for this problem.
Figure 1 illustrates that the terminal constraints are met precisely.

4 Conclusions

A direct approach for the solution of nonlinear optimal control problems has
been developed utilising Gauss–Lobatto quadrature to formulate the non-
linear constraint equations and cost function. The approach is implemented
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efficiently using an integration matrix, whose entries are analytically derived.
A set of mapped covectors approximate the continuous covectors for the opti-
mal control problem, and a numerical example illustrates excellent agreement
with an indirect method.
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