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Materially-isospectral congruent membranes

H. P .W. Gottlieb∗
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Abstract

Materially-isospectral congruent membranes are membranes which
have the same shape but different structure, that is different densities,
yet they possess the same vibration frequency spectrum. Some ap-
proaches to finding such systems are described, and explicit formulae
are presented for some annular and circular membranes. The results
are numerically verified.
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1 Introduction

Isospectral membranes are membranes having the same vibration frequency
spectrum for given boundary condition. They may be shape-isospectral, dif-
fering in shape but being of uniform density, so one looks at eigenvalues of
the Laplacian. In that case, the question [1] “Can one hear the shape of a
drum?” arises, and the answer, at least for some shapes, is “No”: there are
uniform membranes of genuinely different shapes having the same character-
istic frequency spectrum [2]. In this paper we look at the alternative problem
of materially-isospectral membranes, which have the same shape (congruent)
but have different material properties, in this case density functions. Here,
“one cannot hear the density of a drum”. There may be isospectrality for
more than one boundary condition, such as fixed edges and free edges.

As well as being interesting in themselves as non-homogeneous systems
with exact or related solutions, these examples have a practical side. For in-
verse problems, they indicate which sets of boundary conditions are not suffi-
cient to distinguish the structure. They may be used as partial inputs to test
inversion algorithms when comparing systems with some identical boundary-
condition spectra. They also provide benchmark problems for testing the
accuracy of numerical methods for solving partial differential equations in
two dimensions with spatially varying equation coefficients.
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This paper deals with radial power transformations for annular mem-
branes, leading to inverse-fourth-power densities isospectral with uniform
membranes, and with conformal maps for circular membranes. Computed
tables verify some examples.

2 Annular membranes and radial power

transformations

For two-dimensional plane polar coordinates (r, θ), consider the radial power
transformation

r′ =
Rp+1

rp
, (1)

where R is some length scale and a ≤ r ≤ b . For a non-trivial transformation
(p 6= −1), congruent annuli result only if p = 1 . Then with the choice
R2 = ab , r = a ⇔ r′ = b and r = b ⇔ r′ = a . (The inner and outer radii
are interchanged, but still a ≤ r′ ≤ b .)

Thus we consider the inversion of coordinates

r =
ab

r′ , θ = θ′ , (2)

and relate functions
u(r, θ) = v(r′, θ′) . (3)

Now if v is the transverse displacement of vibrations of a homogeneous an-
nular membrane with radii a ≤ r′ ≤ b , and with constant tension T and
constant density σ0, then v(r′, θ′) satisfies a modified Helmholtz equation
involving the two-dimensional Laplacian

∇′2v = −ω2

T
σ0v , (4)
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where the prime refers to the primed coordinates and ω denotes the angular
eigenfrequencies. With the transformation (2), the variable u(r, θ) is found [3]
to satisfy the partial differential equation

∇2u = −ω2

T
σ0

a2b2

r4
u . (5)

This is the partial differential equation for the displacement of a congruent
but inhomogeneous membrane with inverse fourth-power radial density

σ(r) = σ0
a2b2

r4
, (6)

and the same eigenfrequency spectrum {w} which is therefore isospectral
to the homogeneous (uniform) annular membrane with the same inner and
outer radii. Note [3] that only if p = 1 (or, trivially, −1) is the complete
two-dimensional (radial and angular) Laplacian obtained as in (5).

Since v = 0 ⇔ u = 0 , the condition of fixed rims (Dirichlet boundary
condition (Dbc)) is preserved; and since ∂v

∂r′ = 0 ⇔ ∂u
∂r

= 0 , the condition
of free rims (Neumann boundary condition (Nbc)) is preserved. Thus the
membranes are isospectral in both Dbc and Nbc boundary configurations.

The vibration amplitude functions (that is, the eigenfunctions) are related
by

um
n (r, θ) = vm

n

(ab

r
, θ

)
, (7)

where the vm
n are the standard eigenfunctions for a homogeneous annular

membrane with the appropriate boundary conditions [4, p.116]. They involve
Bessel functions of the first and second kind of integer order n, and the
trigonometric functions of order n. Here, m denotes the mth solution of the
transcendental eigenvalue equation arising from the boundary conditions.

Interestingly, the membrane masses are equal. The mass of the uniform
membrane is

Mσ0 = πσ0(b
2 − a2) . (8)
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Whereas the mass of the inhomogeneous membrane is

Mσ = 2π

∫ b

a

σ0a
2b2

r4
r dr

= −πσ0a
2b2

( 1

b2
− 1

a2

)
= πσ0(b

2 − a2)

= Mσ0 . (9)

Since the inhomogeneous membrane (5) attains its maximum density at r = a
(σ(a) = σ0b

2/a2) and its minimum density at r = b (σ(b) = σ0a
2/b2), the

density variation over this membrane is

σmax

σmin

=
b4

a4
, (10)

which may be substantial, depending on the radius ratio.

More generally, if the (r′, θ′) membrane has a non-constant density σ1(r
′, θ′),

and with r = ab/r′ , it turns out that there is isospectrality of σ1 with

σ2(r, θ) =
a2b2

r4
σ1

(ab

r
, θ

)
. (11)

The masses are again equal:

M2 =

∫ 2π

θ=0

∫ b

r=a

σ2(r, θ)r dr dθ

=

∫ 2π

θ′=0

∫ a

r′=b

r′4

a2b2
σ1(r

′, θ′)
ab

r′

(
− ab

r′2

)
dr′ dθ′

=

∫ 2π

θ′=0

∫ b

r′=a

σ1(r
′, θ′)r′ dr′ dθ′ = M1 . (12)
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2.1 Example 1: Annular membrane with inverse 4th
power density

The results of some eigenvalue computations are presented in Tables 1 and 2,
for annular membranes with a = 1/2 , b = 1 , T = 1 , σ0 = 1 , involving an
inhomogeneous membrane with (6)

σ(r) =
1

4r4
. (13)

Here, for the homogeneous membrane, n signifies the number of nodal diam-
eters, and m− 1 is the number of (internal) nodal circles.

For these calculations, the “exact” angular frequencies were found numer-
ically as the roots of the algebraic eigenvalue equation (obtained from the
explicit eigenfunctions and boundary conditions) using Maple, and are there-
fore correct to the number of digits given. The “computed” eigenvalues (ω2)
were found using the Eigenmodes facility of the finite element pde Toolbox
package of matlab, for Dirichlet and for Neumann boundary conditions.
For the Dirichlet case, Table 1, the first thirteen (including degenerate) se-
quential eigenvalues are listed, together with next circularly symmetric mode
(n = 0 , m = 2 : 18th mode). The Uniform, Computed column exhibits, first
of all, the degree to which degeneracies for the n > 0 modes are recovered.
Comparison with the Exact column then indicates an accuracy of about 0.1%
when the numerical package with the 5th mesh (four refinements) was used.
As expected, finite element methods over estimate the true values. The Com-
puted values for the inverse 4th power density follow the computed values for
the uniform case very closely, to better than 0.1%, and are convincing confir-
mation of the isospectrality. In this case, the ratio (10) assumes the value 16,
so the variation in density over the domain of the inhomogeneous membrane
is quite substantial. The agreement is thus all the more impressive, as the
two membranes are very different in structure.

For the Neumann case, Table 2, the first 15 (including degenerate) non-
zero sequential eigenvalues are listed (as well as the zero eigenvalue). In this
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Table 1: Eigenvalues ω2 for uniform and inverse-fourth-power density annu-
lar membranes, equation (6), with inner radius a = 0.5 (T = 1, σ0 = 1, b = 1):
Dirichlet boundary condition.

Uniform Inverse 4th power (13)
n m ω2 Exact ω2 Computed ω2 Computed
0 1 39.0133 39.0223 39.0223
1 1 40.8725 40.8823 40.8824
1 1 40.8725 40.8826 40.8827
2 1 46.4285 46.4415 46.4418
2 1 46.4285 46.4419 46.4428
3 1 55.6179 55.6374 55.6391
3 1 55.6179 55.6377 55.6396
4 1 68.3388 68.3691 68.3731
4 1 68.3388 68.3695 68.3740
5 1 84.4569 84.5043 84.5127
5 1 84.4569 84.5046 84.5142
6 1 103.814 103.887 103.903
6 1 103.814 103.888 103.906
...

...
...

...
...

0 2 157.424 157.592 157.651

case, because of the closer spacing and lower values, the 6th mesh was used
for the finite element computation package, with consequent even more im-
pressive confirmation of isospectrality. (The tabulated results well illustrate
the appropriate isospectrality for the cases selected here and later, so it was
not necessary to make more highly accurate numerical computations.)
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Table 2: Eigenvalues ω2 for uniform and inverse-fourth-power density annu-
lar membranes, equation (6), with inner radius a = 0.5 (T = 1, σ0 = 1, b = 1):
Neumann boundary condition.

Uniform Inverse 4th power (13)
n m ω2 Exact ω2 Computed ω2 Computed

0 0.0000 0.0000
1 1 1.83514 1.8352 1.8352
1 1 1.83514 1.8352 1.8352
2 1 7.18886 7.1891 7.1891
2 1 7.18886 7.1891 7.1892
3 1 15.6638 15.6645 15.6651
3 1 15.6638 15.6645 15.6651
4 1 26.7830 26.7845 26.7869
4 1 26.7830 26.7845 26.7869
5 1 40.1815 40.1845 40.1906
5 1 40.1815 40.1846 40.1907
0 1 40.8725 40.8748 40.8756
1 2 43.0985 43.1012 43.1017
1 2 43.0985 43.1013 43.1021
2 2 49.8801 49.8842 49.8844
2 2 49.8801 49.8842 49.8848
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3 Circular membranes and conformal

mappings

Consider a region in the x, y-plane (with z = x + iy ≡ r exp iθ), and an
analytic map f to the ξ, η-plane:

f(z) = ζ = ξ + iη ≡ ρ exp(iφ) , (14)

with ξ = ξ(x, y) and η = η(x, y) . For a uniform (constant density σ0)
membrane (with unit tension T = 1) in the ξ, η-plane, the amplitude func-
tion v(ξ, η) satisfies the two-dimensional partial differential equation

∇2
ξ,ηv + ω2σ0v = 0 . (15)

Let
v(ξ, η) = u(x, y) . (16)

Then it may be shown [5, Chapter 7] that, as a consequence of the Cauchy–
Riemann equations, u(x, y) satisfies the partial differential equation

∇2
x,yu + ω2σ0|f ′(z)|2u = 0 . (17)

This shows that u(x, y) is the amplitude function for an inhomogeneous mem-
brane in the x, y-plane with density function

σ(x, y) = σ0|f ′(z)|2 , (18)

with the same eigenfrequency spectrum.

We are interested here in circular membranes [6, 7]. Up to rotations,
the only one-to-one analytic mapping of the unit disc onto itself [5] is the
conformal (Möbius) map

ζ = f(z) =
z − α

1− αz
, −1 < α < 1 . (19)
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This has the property that |ζ| = 1⇔ |z| = 1 , so that the boundary is mapped
onto itself. Furthermore, v = 0 ⇔ u = 0 , so the fixed edge condition (Dbc)
is preserved; and ∂v

∂ρ
= 0 ⇔ ∂u

∂r
= 0 , so the free edge condition (Nbc) is also

preserved.

Use of (19) in (18) yields the density function [6]

σ(x, y) = σ0
(1− α2)2[

(1− αx)2 + α2y2
]2 . (20)

These constitute a family of densities, for −1 < α < 1 , of inhomogeneous
(unit tension, unit radius) circular membranes which are isospectral to a
standard homogeneous (unit radius) circular membrane, and to each other.
This holds for both fixed and free boundary conditions.

More generally, if the membrane in the ξ, η-plane has non-uniform den-
sity σ1(ξ, η), then the mapped isospectral membrane in the x, y-plane has
density function

σ2(x, y) = |f ′(z)|2σ1(ξ(x, y), η(x, y)) . (21)

The proof of equality of masses here uses the fact that the Jacobian of the
transformation is just |f ′(z)|2:

M1 =

∫∫
σ1(ξ, η) dξ dη =

∫∫
σ1|f ′(z)|2 dx dy =

∫∫
σ2 dx dy = M2 . (22)

The maximum density variation for the inhomogeneous membrane with den-
sity given by (20), which is materially-isospectral to a uniform membrane
with constant density σ0, is

σmax(x = 1, y = 0)

σmin(x = −1, y = 0)
=

(1 + α

1− α

)4

, (23)

which may be appreciable for α near 1.
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3.1 Examples 2,3: Circular membranes isospectral to
uniform membranes

For a unit tension, unit radius circular membrane with constant, unit, density,
the standard eigenfunction solutions involve Bessel functions [4], and hence
the exact eigenvalues against which numerical finite element computations
may be compared are available from the solutions of the resulting algebraic
eigenfrequency equation Jn(ω) = 0 (for Dbc).

Table 3 lists the first ten values of ω2 for a uniform circular membrane
(Dirichlet boundary condition) and for the isospectral non-uniform mem-
branes with densities given by (20) for parameter values α = 0.2 and α = 0.5 .
For instance,

σα=1/2(x, y) =
9[

(2− x)2 + y2
]2 . (24)

Again there is good correspondence. The ratio (23) has value 5.0625 for
α = 0.2 . For α = 0.5 the ratio is 81, so there is a very large variation in
density over the region. This may be reflected in the slightly less accurate
values returned by the computational package. Agreement is nevertheless
within about 0.1%.

3.2 Example 4: Circular membrane with linear radial
density and corresponding isospectral membrane

In this instance, two different non-uniform membranes isospectral to each
other are considered, for parameter value α = 1/2 . The first has a linear
radial density

σ1 = r , (25)
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Table 3: Eigenvalues ω2 for uniform circular membrane (Dirichlet boundary
condition) and for densities (20) obtained by a conformal map, for values of
the parameter α = 1/5 and α = 1/2 .

Uniform Conformal
n m ω2 Exact ω2 Computed ω2 Computed

α = 0.2 α = 0.5
0 1 5.7832 5.7835 5.7836
1 1 14.6820 14.6839 14.6856
1 1 14.6820 14.6840 14.6867
2 1 26.3746 26.3810 26.3889
2 1 26.3746 26.3812 26.3909
0 2 30.4713 30.4796 30.4898
3 1 40.7065 40.7219 40.7446
3 1 40.7065 40.7223 40.7465
1 2 49.2185 49.2389 49.2601
1 2 49.2185 49.2416 49.2792



3 Circular membranes and conformal mappings C164

and its isospectral partner via (21) and (19) has density

σ2 =
9

16

√
1
4

+ x2 + y2 − x[
1 + 1

4
(x2 + y2)− x

]5/2
. (26)

This expression is clearly of non-radial form.

For a unit-tension, unit-radius circular membrane with linear radial den-
sity r (25), it may be shown that, for fixed rim, the characteristic angular
eigenfrequencies satisfy

J 2
3
n

(2ω

3

)
= 0 . (27)

Table 4 lists the first ten eigenvalues ω2 for comparison. The inhomogeneous
density in equation (26) is rather complicated. Nevertheless, Table 4 exhibits
good agreement with the simpler density (25), again to within about 0.1%.

Amusingly, comparison of (27) with the eigenfrequency equation for the
uniform membrane quoted in Section 3.1 above shows that, for n = 0 , the
eigenvalues for the former are (9/4) times those for the latter. This is born
out by Tables 3 and 4 for (n, m) = (0, 1) and (0, 2). Other relationships
for certain frequencies may be deduced. For instance, the n=3 eigenvalues
obtained from (27) are (9/4) times those for the n = 2 eigenvalues of the
uniform membrane. This is demonstrated by the m = 1 entries for those
appropriate n values in Tables 3 and 4.

4 Discussion

This paper has demonstrated, by explicit constructions and numerical exam-
ples for annular and for circular membranes, the fact that “one cannot hear
the structure of a drum”, that is, “different densities can sound the same”.
This should be taken in the sense of Chapman [2] (stated there for different
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Table 4: Eigenvalues ω2 for unit radius circular membranes (Dirichlet
boundary condition) with densities given by r (25) and by Equation (26).

σ1 = r σ2(x, y)(26)
n m ω2 Exact ω2 Computed ω2 Computed
0 1 13.0122 13.0128 13.0130
1 1 25.6382 25.6413 25.6449
1 1 25.6382 25.6414 25.6481
2 1 41.1267 41.1359 41.1521
2 1 41.1267 41.1361 41.1560
3 1 59.3429 59.3633 59.4059
3 1 59.3429 59.3634 59.4094
0 2 68.5603 68.5810 68.6269
4 1 80.1958 80.2342 80.3173
4 1 80.1958 80.2350 80.3299

shapes) that they can produce exactly the same frequency spectrum. Thus
for membranes with the same shape and the same boundary condition, a
characteristic frequency spectrum may not be enough to distinguish whether
they have the same density distribution. In particular, such considerations
may have bearing on the determination of whether a system is uniform or
has imperfections.

The addition of further information from a different boundary condition
may still not lead to a resolution, as in the case of both Dirichlet (fixed
rim) and Neumann (free rim) conditions above. Thus some other boundary
condition, or some other property such as modal or nodal data [8], may
have to be included if an inversion scheme to determine the density is to be
successful.

All the isospectral examples in this paper were shown in each case to
have equal mass. This suggests that knowledge of a frequency spectrum,
whilst not allowing a determination of the actual density distribution of
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an inhomogeneous membrane of prescribed shape, might in general reveal
the total mass. This is borne out by the considerations of Courant and
Hilbert [9, p.442], where a cumulative eigenvalue counting function asymp-
totically yields

∫∫
σ dx dy , that is, the mass of the membrane. An interesting

question then arises of whether other broad structural features may also be
obtainable from a frequency spectrum.

Acknowledgments: I thank Dr. Maeve McCarthy for discussions and
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