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A computationally effective predictor-corrector
method for simulating fractional order
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Abstract

Multi-order fractional differential equations are applied to frac-
tional order dynamical controlled systems. The multi-order fractional
differential equation is transferred into a system of fractional order dif-
ferential equations. A new computationally effective fractional predictor-
corrector method is proposed for simulating the fractional order sys-
tems and controllers. A detailed error analysis is derived. Finally, we
give some numerical examples.
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1 Introduction

The Fractional Calculus is, simultaneously, a new and old research issue. This
contradiction comes from the fact that most scientists are not aware of its
existence and, often, discover that this ’new’ tool provides fruitful perspec-
tives in their studies. For three centuries the theory of fractional derivatives
developed mainly as a pure theoretical field of mathematics useful only for
mathematicians [1]. However, in the last few decades many have pointed out
that derivatives and integrals of non-integer order are very suitable for the
description of the properties of various real materials. It has been shown that
new fractional order models are more adequate than previously used integer
order models [1]. In the past two decades, fractional order control systems
attracted the attention of many researchers lately [2]. However, because of
the absence of appropriate mathematical methods, fractional order dynam-
ical systems were studied only marginally in theory and practice of control
systems.



1 Introduction C170

W(S) + E(S) U(s)
G(s)

Y(s)
G (s)c_

Figure 1: Simple unity-feedback control system

Let us consider the simple unity-feedback control system [1] shown in
Figure 1, where G(s) is the transfer function of the controlled system, Gc(s) is
the transfer of the controller, W (s) is an input, E(s) is an error, U(s) is
the controller’s output, and Y (s) is the system’s output. Contrary to the
traditional model, we consider transfer functions of arbitrary real order. Such
systems are called fractional order control systems, which are better described
by fractional order mathematical models.

Now consider the fractional order transfer function (fotf) [1]:

Gn(s) =
1

ansαn + an−1sαn−1 + · · ·+ a1sα1 + a0sα0
, (1)

where αn > αn−1 > · · · > α1 > α0 ≥ 0 , 0 < αn − αn−1 < 1 , and αk (k =
0, 1, . . . , n) are arbitrary real numbers. In the time domain, the fotf (1)
corresponds to the (n + 1)-term fractional order differential equation

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a1D
α1y(t) + a0D

α0y(t) = u(t) , (2)

where Dαy = C
0 Dα

t y = Jm−αy(m)(t) is the Caputo fractional derivatives (in
time) of order α:

C
0 Dα

t y(t) =


1

Γ(m− α)

∫ t

0

y(m)(τ)

(t− τ)α+1−m
dτ , 0 ≤ m− 1 < α < m ,

dmy(t)

dtm
, m ∈ N ,

(3)

where m is the integer defined by the relation m− 1 < α < m , and Jq is the
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fractional integral operator

Jqy(t) =
1

Γ(q)

∫ t

0

(t− τ)q−1y(τ) dτ . (4)

Numerical solution of a fractional order differential equation is difficult
to obtain accurately using standard discretization methods. Hu and Liu [3]
considered a four term fractional differential equation corresponding to a
fractional order controlled system. The existence and uniqueness of the solu-
tion of this model are given, and they proposed three numerical methods for
the fractional order control systems. Shen and Liu considered [4] a fractional
order Bagley–Torvik equation, and proved the existence and uniqueness of so-
lution. The analytical solution of a fractional order Bagley–Torvik equation
is also derived by the corresponding Green’s function. Using the relation-
ship between the Riemann–Liouville definition and the Gronwald–Letnikov
definition, Shen and Liu proposed a computationally effective method for
the fractional order Bagley–Torvik Equation. Diethelm et al. [5] proposed
some techniques for solving fractional order ordinary differential equations
and analysed errors. Lin and Liu [6] also proposed a fractional order nu-
merical method for the fractional relaxation equation, and the consistence,
convergence and stability of this method is proven. Liu et al. [7] proposed
some efficient fractional numerical methods for solving fractional partial dif-
ferential equation. A special multi-order fractional differential equation was
also considered by Miller and Ross [8]. The multi-order fractional differential
equations were written as an equivalent system of fractional order differential
equations. However, numerical methods for solving fractional order differen-
tial systems are limited. Therefore, a new numerical strategy is important in
solving these fractional order systems. We propose a new technique for solv-
ing fractional order differential equation systems and are apply the technique
to simulate a fractional order control system.

Some basic ideas and lemmas are presented in Section 2. A computation-
ally effective fractional predictor-corrector method is proposed in Section 3.
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A detailed error analysis is derived in Section 4. Finally, Section 5 gives some
numerical results.

2 Basic ideas and lemmas

We are concerned with providing good quality methods for the solution of
multi-order fractional differential equations of the general form

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a1D
α1y(t) + a0D

α0y(t) = f(t) ,

yk(0) = y
(k)
0 , k = 0, 1, . . . , dαne (5)

where αn > αn−1 > · · · > α1 > α0 ≥ 0 , 0 < αn − αn−1 < 1 , αk (k =
0, 1, . . . , n) are arbitrary real numbers, ak (k = 0, 1, . . . , n) are arbitrary
constants.

The basic analytical results on existence and uniqueness of solutions to
fractional differential equations are given in [1, 8]. Miller and Ross [8] gave
a method for calculating the analytic solution to a multi-term fractional
differential equation of the form

anD
nαy(t) + an−1D

(n−1)αy(t) + · · ·+ a1D
αy(t) + a0D

0y(t) = 0 , (6)

where α = 1/M , M ∈ N . They interpret the fractional operator Diα as
Dα applied i times. Under this interpretation they describe the multi-term
fractional differential equation as a sequential fractional differential equation.

For the sake of simplicity we assume that αi = i/2 = mi ∈ N , if i is an
even number; (i− 1)/2 < αi < (i+1)/2 , if i is an odd number; that is, there
is at most one non-integer order derivative between successive integer orders.

Lemma 1 Let y ∈ Ck [0, T ] for some T > 0 and some k ∈ N , and let β /∈ N
such that 0 < β < k , then C

a Dβ
t y(0) = 0 .
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Proof: See [9]. ♠

Lemma 2 The differentiation operators C
a Dα

t f(t) and C
a Dm

t f(t) satisfy the
interchange rule:

C
0 Dα

t

(
C
0 Dm

t f(t)
)

= C
0 Dm

t

(
C
0 Dα

t f(t)
)

= C
0 Dα+m

t f(t) , (7)

f (s)(0) = 0 , s = n, n + 1, . . . ,m , m = 0, 1, . . . , n− 1 < α < n .

Proof: See [1]. ♠

Let y ∈ Cdαne [0, T ] for some T > 0 . Using Lemma 1, we have

C
0 D

α2i−α2i−1

t
C
0 D

α2i−1

t y(t) = C
0 Dα2i

t y , C
0 D

α2i+1−α2i

t
C
0 Dα2i

t y(t) = C
0 D

α2i+1

t y . (8)

Now we rewrite the multi-order fractional differential equations (5) in the
form of a system of fractional order differential equations:

C
0 Dβ1

t x1(t) = C
0 Dα1

t x1(t) = x2(t),
...

C
0 D

βn−1

t xn−1(t) = C
0 D

αn−1−αn−2

t xn−1(t) = xn(t) ,

C
0 Dβn

t xn(t) = C
0 D

αn−αn−1

t xn(t)

=
1

an

[f(t)− a0x1 − a1x2 − · · · − an−1xn] ,

(9)

with initial equations

x1(0) = x
(1)
0 = y

(0)
0 , x2(0) = x

(2)
0 = 0 , . . . ,

xi(0) = x
(i)
0 =

{
y

(k)
0 , if i = 2k + 1 ,

0 , if i = 2k ,
i ≤ n . (10)

Using Lemma 1 and Lemma 2, we obtain the following theorem:
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Theorem 3 The multi-order fractional differential equations (5) is equiva-
lent to the system of equations (9) with the initial conditions (10).

3 A fractional predictor-corrector technique

In this section, numerical technique for simulate fractional order control sys-
tems (1) are presented. Firstly, the fractional order differential systems is
decoupled, which is equivalent to solving

C
0 Dβ1

t x1(t) = g1(t, x1) ,
...

C
0 Dβn

t xn(t) = gn(t, xn) .

(11)

Secondly, we consider a computationally effective fractional predictor-
corrector method for solving the following initial-value problem:

C
0 Dβi

t xi(t) = gi(t, xi) , xi(0) = x
(i)
0 , i = 1, 2, . . . , n , (12)

where 0 < βi < 1 .

It is well known that the initial-value problem (12) is equivalent to the
Volterra integral equation

xi(t) = x
(i)
0 +

1

Γ(βi)

∫ t

0

(t− τ)βi−1 [gi(τ, xi(τ))] dτ . (13)

For the sake of simplicity, we assume that we are working on a uniform grid
tj = jτ , j = 0, 1, . . . ,Mτ = T .

The issue of stability is very important when implementing the method on
a computer in finite precision arithmetic because we must take into account
effects introduced by rounding errors. It is known that the classical Adams–
Bashforth–Moulton method for first order ordinary differential equations is



3 A fractional predictor-corrector technique C175

a reasonable and practically useful compromise in the sense that its stabil-
ity properties allow for a safe application to mildly stiff equations without
undue propagation of rounding error, whereas the implementation does not
require extremely time consuming elements [10]. Thus, a fractional Adams–
Bashforth method and a fractional Adams–Moulton method are chosen as
our predictor and corrector formulas.

The predictor xP
i,k+1 is determined by the fractional Adams–Bashforth

method [5, 11]:

xP
i,k+1 = x

(i)
0 +

1

Γ(α)

k∑
j=0

b
βj

j,k+1gi(tj, xi,j) , (14)

where

bβ
j,k+1 =

τβ

β
[(k + 1− j)β − (k − j)β] . (15)

The fractional Adams–Moulton method determines the corrector formula [5,
11]:

xi,k+1 = x
(i)
0 +

1

Γ(βi)

(
k∑

j=0

aβi

j,k+1gi(tj, xi,j) + aβi

k+1,k+1gi(tk+1, x
P
i,k+1)

)
, (16)

where

aβ
j,k+1 =

τβ

β(β + 1)


kβ+1 − (k − β)(k + 1)β , j = 0 ,
(k − j + 2)β+1 + (k − j)β+1

−2(k − j + 1)β+1 , 1 ≤ j ≤ k ,
1 , j = k + 1 .

(17)

Therefore, we obtain the following new fractional predictor-corrector method
for solving the fractional order differential systems (9).
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Fractional Predictor formulas:

xP
i,k+1 = x

(i)
0 +

1

Γ(βi)

k∑
j=0

bβi

j,k+1xi+1,j , i = 1, 2, . . . , n− 1 , (18)

xP
n,k+1 = x

(i)
0 +

1

Γ(βn)

k∑
j=0

bβn

j,k+1

1

an

[u(tj)− a0x1,j − · · · − an−1xn,j] .(19)

Fractional Corrector formulas:

xi,k+1 = x
(i)
0 +

1

Γ(βi)

(
k∑

j=0

aβi

j,k+1xi+1,j + aβ
k+1,k+1x

P
i+1,k+1

)
,

i = 1, 2, . . . , n− 1 , (20)

xn,k+1 = x
(i)
0 +

1

Γ(βn)

{
k∑

j=0

aβn

j,k+1

1

an

[u(tj)− a0x1,j − · · · − an−1xn,j]

+ aβn

k+1,k+1

1

an

[
u(tk+1)− a0x

P
1,k+1 − · · · − an−1x

P
n,k+1

]}
(21)

4 Error analysis for the fractional

predictor-corrector method

In this section we present the theorems concerning the error of our fractional
predictor-corrector method.

Lemma 4 Let z ∈ C1[0, T ] , then∣∣∣∣∣
∫ tk+1

0

(tk+1 − t)β−1z(t) dt−
k∑

j=0

bβ
j,k+1z(tj)

∣∣∣∣∣ ≤ 1

β
‖z′‖∞tβk+1τ .
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Proof: See [5, 11]. ♠

Lemma 5 If z ∈ C2[0, T ] , then there is a constant Cβ depending only on β
such that∣∣∣∣∣

∫ tk+1

0

(tk+1 − t)β−1z(t) dt−
k+1∑
j=0

aβ
j,k+1z(tj)

∣∣∣∣∣ ≤ Cβ‖z′′‖∞tβk+1τ
2 . (22)

Proof: See [5, 11]. ♠

Theorem 6 If C
0 Dβi

t xi ∈ C2[0, T ] , (i = 1, 2, . . . , n), then

max
0≤j≤M
1≤i≤n

∣∣∣xi(tj)− xi,j

∣∣∣ = O(hq) (23)

where q = 1 + min1≤i≤n βi .

Proof: Using given condition C
0 Dβi

t xi ∈ C2[0, T ] , (i = 1, 2, . . . , n), Lemma 4
and Lemma 5, we have∣∣∣∣∣
∫ tk+1

0

(tk+1 − t)βi−1C
0 Dβi

t xi(t) dt−
k∑

j=0

bβ
j,k+1

C
0 Dβi

t xi(tj)

∣∣∣∣∣ ≤ C1t
βi

k+1τ , (24)

∣∣∣∣∣
∫ tk+1

0

(tk+1 − t)βi−1C
0 Dβi

t xi(t) dt−
k+1∑
j=0

aβ
j,k+1

C
0 Dβi

t xi(tj)

∣∣∣∣∣ ≤ C2t
βi

k+1τ
2 . (25)

We show that, for sufficiently small τ = T/M ,

max
0≤j≤M
1≤i≤n

∣∣∣xi(tj)− xi,j

∣∣∣ = O(τ q) , (26)
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where q = 1 + min1≤i≤n βi . The proof will be based on mathematical induc-
tion. In view of the given initial condition, the induction basis (j = 0) is
presupposed.

Now assume that (26) is true for j = 0, 1, . . . , k (k ≤ M − 1), that is,

max
0≤j≤M
1≤j≤n

∣∣∣xi(tj)− xi,j

∣∣∣ = O(τ q) . (27)

We must then prove the inequality also holds for j = k + 1 . To do this, we
first look at the error of the predictor solutions xP

i,k+1, i = 1, 2, . . . , n . By
construction of the predictor formulas, using (24), assumption (27), and

k∑
j=0

bβi

j,k+1 =

∫ tk+1

0

(tk+1 − t)βi−1 dt =
1

βi

tβi

k+1 ≤
1

βi

T βi ,

we find that∣∣∣xi(tk+1)− xP
i,k+1

∣∣∣ ≤ C1T
βi

Γ(βi)
τ +

C0T
βi

Γ(βi + 1)
τ q , i = 1, 2, . . . , n− 1 ,(28)

|xn(tk+1)− xP
n,k+1| ≤

C1T
βn

Γ(βn)
τ +

C̄0LT βn

Γ(βn + 1)
τ q . (29)

Now we begin the analysis of the corrector error. For j = k + 1 , arguing
in a similar way to the above, by construction of the predictor formulas,
using (25), assumption (27), and (28)–(29), we find that∣∣∣xi(tk+1)− xi,k+1

∣∣∣
≤

(
C2T

βi

Γ(βi)
+

C0T
βi

Γ(βi + 1)
+

C1T
βi

Γ(βi)Γ(βi + 2)
+

C0T
βi

Γ(βi + 1)Γ(βi + 2)
τβi

)
τ q

≤ Cτ q , i = 1, 2, . . . , n− 1 ; (30)∣∣∣xn(tk+1)− xn,k+1

∣∣∣
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≤
(

C2T
βn

Γ(βn)
+

C0T
βn

Γ(βn + 1)
+

C1T
βn

Γ(βn)Γ(βn + 2)
+

C̄0T
βn

Γ(βn + 1)Γ(βn + 2)
τβn

)
τ q

≤ Cτ q . (31)

This completes the proof. ♠

Therefore, we obtain not only an approximation for the solution y(t) of
the n term fractional order differential equation, but also approximations for
its (Caputo type) derivatives of order αi (i = 1, 2, . . . , n − 1). Apart from
this useful feature, the method has a rather simple structure that makes it
very easy to implement.

5 Numerical Results

Consider a fractional order controlled system with transfer function [1, 2]

G4(s) =
1

a4sα4 + a3sα3 + a2sα2 + a1sα1 + a0

, (32)

where we take 0 < α1 < 1.0 , α2 = 1.0 , 1.0 < α3 < 2.0 , α4 = 2.0 , a0 = 1 ,
a1 = 0 , a2 = 0 , a3 = 0.5 , a4 = 1 . The fractional order transfer function (32)
corresponds in the time domain to the five term fractional order differential
equation

a4D
α4y(t) + a3D

α4 + a2D
α2y(t) + a1D

α1y(t) + a0y(t) = u(t) , (33)

with the initial conditions

y(0) = y
(0)
0 = 0, y′(0) = y

(1)
0 = 1 . (34)

Now rewrite the multi-order fractional differential equations (32) as a
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Figure 2: Unit-step response of the fractional order system with u(t) = 1 .

system of fractional order differential equations:
C
0 Dβ1

t x1(t) = C
0 Dα1

t x1(t) = x2(t) ,
C
0 Dβ2

t x2(t) = C
0 Dα2−α1

t x2(t) = x3(t) ,
C
0 Dβ3

t x3(t) = C
0 Dα3−α2

t x3(t) = x4(t) ,

C
0 Dβ4

t x4(t) = C
0 Dα4−α3

t x4(t) =
1

a4

[u(t)− a0x1 − a1x2 − a2x3 − a3x4] ,

(35)
with initial conditions

x1(0) = y
(0)
0 = 0 , x2(0) = 0 , x3(0) = y

(1)
0 = 1 , x4(0) = 0 . (36)

Example 1. We take α1 = 0.5 , α2 = 1.0 , α3 = 1.5 , α4 = 2.0 .
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Figure 3: Unit-step response of the fractional order system with u(t) = 0 .

Figures 2 and 3 show the simulation results with u(t) = 1 and u(t) = 0 ,
respectively. The system exhibits behaviors of the solution and its derivatives
of order 0.5, 1, 1.5 . From Figures 2 and 3, see that the computed results are
in excellent agreement with those of Wang et al. [12].

Example 2. We take α1 = 0.5 , α2 = 1.0 , 1.1 ≤ α3 ≤ 1.9 , α4 = 2.0 .

Figure 4 displays the effect of 1.1 ≤ α3 ≤ 1.9 (that is, 0.1 ≤ β3 ≤ 0.9)
using predictor-corrector method for the fractional order control system with
u(t) = 1 . From Figure 4 shows that when β3 increases from 0.1 to 0.9, the
oscillation of solution also increases.

Figures 2–4 show that the fractional predictor-corrector method provides
a computationally effective method for simulating the behavior of the solution
of a fractional order control system.
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Figure 4: Solution of fractional order system for 0.1 < β3 < 0.9 , u(t) = 1 .

6 Conclusions

A fractional predictor-corrector method for simulating the fractional order
control systems has been described and demonstrated. This method pro-
vides a computationally effective method for simulating the behavior of the
solution of a fractional control system. A detailed error analysis is discussed.
This numerical technique can be applied to simulate other fractional order
differential system.
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