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Abstract

Atherosclerosis is a condition whereby fatty material is deposited in
the walls of arteries (plaque) resulting in a thickening of the wall. Here
we develop a mathematical model describing the biochemical processes
of the formation of atherosclerotic plaque, which involves the interaction
between pro-inflammatory mediators, modified low density lipoprotein,
monocytes, macrophages, foam cells and high density lipoprotein. In
addition, based on the outcomes of the biochemical model, we develop
a plaque growth model that takes into account both the inward and
outward expansion of the arterial walls. We examine the stability and
bifurcations of this model in order to explore the clinical and medical
implications of plaque growth.
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1 Introduction

Atherosclerosis is a chronic inflammatory disease, which deposits fatty material
inside the walls of arteries (plaque), resulting in a thickening of the intimal
region. These lesions can form in the intima, the inner most layer of the
arterial wall, as early as infancy and remain subclinical for decades without
causing any clinical symptoms. The lesions may regress over time or can
continue to grow and cause sudden clinical manifestations such as coronary
artery disease, ischemic cerebrovascular disease, and peripheral heart disease.
The artery wall initially dilates in response to the thickening so that the
blood flow through the lumen remains unaltered [1]. However, at some point,
the artery can no longer compensate by dilation and the plaque starts to
grow towards the lumen, which may eventually cause stenosis or occlusions.
Besides the hemodynamic effects on blood flow and blood pressure, these
stenosed plaques often weaken the arterial wall, leading to rupture and the



1 Introduction C322

sudden occlusions of blood flow to vital organs. Plaques with a high lipid
content, that is, a large necrotic core in their centre and with a thin fibrous
cap, are more susceptible to rupture [2].

A dysfunctional endothelium, which is characterised as an endothelium with
increased endothelial cell death or injury and impaired repair capacity, plays
a pivotal role in initiating atherosclerosis. Experimental studies suggest that
the endothelial systems in patients with hypercholesterolaemia and hyper-
tension may be exposed to repetitive injury, and have reduced repairing
capacity compared to normolipidemic patients with healthy normotensive
controls [3, 4]. Leukocytes (white blood cells such as monocytes and lym-
phocytes) are recruited primarily to the site of injury to serve as reparative
inflammatory cells [5]. However, due to repeated injury and a prolonged
repair process, low density lipoprotein (ldl) may invade the intima where
they rapidly become oxidised. In the presence of modified ldl (ox-ldl) inside
the intima, the primary reparative inflammatory monocyte cells now serve as
inflammatory mediators and these are fundamental to the development of an
atherosclerotic lesion.

Monocytes first differentiate themselves into macrophages and then consume
ox-ldl. Being stimulated by the consumption of ox-ldl, macrophages initiate
a series of intracellular events, such as secretion of monocyte chemotactic pro-
tein 1 (mcp-1), pro-inflammatory cytokines il-1 and endothelium stimulating
cytokines, such as tumor necrosis factor α (tnfα) [7, 6]. These chemoattrac-
tants promote further immigration of monocytes, which may eventually lead
to a chronic inflammatory process. Macrophages that have consumed ox-ldl,
become foam cells and collectively form fatty streaks inside the intima. On
the other hand, high density lipoprotein (hdl) inhibits the progression of
atherosclerosis by removing cholesterol from foam cells, as well as by limiting
the inflammatory processes that promote atherosclerosis [8].

Atherosclerotic plaques initiate and grow through a number of nonlinear
processes operating on different timescales and in different parts of the tissue.
Some of these processes occur in the endothelial layer whereas others occur in
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the arterial wall. Therefore, mathematical and computational models are a
natural framework to provide an integrated description of the disease, which
can help develop therapeutic hypotheses. The research in this area to date is
limited and wide open to new ideas. There are several mathematical studies
which looked at atherosclerosis as an inflammatory disease [9, 10, 11], with
most only considering the interactions between monocytes, macrophages,
ox-ldl and foam cells. More recently, several mathematical models included
the interactions between the above-mentioned cells as well as hdl and a
number of other cellular species [12, 13]. However, none of these studies
considered both the inward and outward expansion of the artery walls in their
plaque growth models.

We consider atherosclerosis as a continuous process and propose a biochemical
model containing a system of odes to simulate the dynamics of the formation
of an atherosclerotic plaque. We examine the stability and bifurcations of
this model in order to investigate the conditions for an inflammatory lesion
to be initiated and under what circumstances it may progress or regress over
time. Another novel aspect of this study is the inclusion of the inward and
outward expansion of the arterial walls in a plaque growth model.

2 The mathematical model

2.1 Biochemical model

To model the early stages of atherosclerosis we use the description of the
mechanisms outlined in Section 1. We model the time evolution of the
mass concentrations of six species: inflammatory mediators; monocytes;
macrophages; ox-ldl; foam cells; and hdl. Hence, the model comprises
equations for:

c(t) concentration of pro-inflammatory mediators (pgmm−3);
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m(t) concentration of monocytes (pgmm−3);

M(t) concentration of macrophages (pgmm−3);

Lox(t) concentration of oxidised ldl (pgmm−3);

F(t) concentration of foam cells (pgmm−3); and

H(t) concentration of hdl (pgmm−3).

None of these six species are present before endothelial injury, hence the
initial conditions are

c(0) = 0 , m(0) = 0 , M(0) = 0 , Lox(0) = 0 , F(0) = 0 , H(0) = 0 .
(1)

Atherosclerosis risk factors, such as hypertension, hypercholesterolaemia,
diabetes, vascular aging and estrogen deficiency, are known to impact the
health of the endothelium and its integrity [3]. Accordingly, the endothelial
system in patients with one or more of these risk factors experiences abnormal
endothelial cell turnover (or injury) and delayed replication [4]. Damage
to the endothelium leads to the production of a number of inflammatory
mediators, such as cell adhesion molecules, cytokines, chemokines and growth
factors. These inflammatory mediators direct the recruitment of inflammatory
cells at the site of the injury as a reparative mechanism. However, these same
inflammatory mediators also play a fundamental role in the development of
atherosclerotic lesions.

To model the concentration of pro-inflammatory mediators, we do not dis-
tinguish between various types of inflammatory mediators such as mcp-1,
inflammatory cytokines il-1, endothelium stimulating cytokines and others.
Instead, we group all pro-inflammatory mediators that induce positive chemo-
taxis and consider them as a single concentration. To include the effects of
endothelium damage we defiine a function f(t) (defined in equation (15)). The
ox-ldl and ox-ldl enriched macrophages (foam cells) inside the intima also
result in an increased concentration of pro-inflammatory mediators. Therefore,
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the concentration of inflammatory mediators is modelled by

dc

dt
= βf(t) + rLox

L2ox
K2Lox + L

2
ox

+ rF
F2

K2F + F
2
− dcc , (2)

where β is the rate of production of inflammatory mediators from the initial
endothelial damage and dc defines its natural decay rate. Here rLox and rF
represent the production rates of inflammatory mediators induced by ox-ldl
and foam cells, respectively. The parameters KLox and KF, respectively, repre-
sent the saturation constants for ox-ldl and foam cell. As discussed above,
the injury to the endothelium is the primary cause of inflammatory mediators,
which are manifestly increased by the subsequent pro-inflammatory process.
Therefore, we expect two possible outcomes of inflammation: termination of
the inflammatory process upon the replacement of the injured endothelial cell
or the establishment of the self-perpetuating inflammatory process leading to
the development of an atherosclerotic plaque.

Monocytes adhere to the site of the injury once triggered by the inflammatory
mediators and penetrate the endothelial layer, reaching the arterial intima,
where they differentiate into macrophages. T-lymphocytes and some other
immune cells also penetrate the endothelial layer in response to the injury [5].
However, we ignore these immune cells in our model. Activated T-cells derived
interferon gamma, with the assistance of macrophage colony stimulating factor,
induces the conversion of monocytes into macrophages. We omit T-cells
from our model by assuming that monocytes differentiate into macrophages
immediately after they become trapped in the intima.

ldl migrate into the artery wall, alongside the immune cells, where they be-
come oxidised (ox-ldl). Monocyte-derived macrophages generate activation-
dependent reactive oxygen species which are capable of in vivo oxidation of
lipoproteins [14]. Endothelial cells also play a major role in the modification
of ldl at the very early stages of lesion formation. However, macrophages
that are trapped in the intima are the most prominent cell type to oxidise ldl
within lesions, once atherosclerosis is initiated [15]. In our model, macrophages
are the only cell type capable of the oxidative modification of ldl.
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Macrophages consume ox-ldl and transform into foam cells once they are
heavily loaded, which eventually leads to the formation of an atheromatous
plaque. Unlike other mathematical models [12, 11], we assume that the con-
centration of ox-ldl never reaches the level where the ability of macrophages
to ingest these particles is limited. Hence, we omit the saturating dynamics of
the uptake of ox-ldl by the macrophages from our modelling. We also assume
that the invaded ldl rapidly modify into ox-ldl, compared to timescales of
ingestion of ox-ldl by the macrophages and other chemical reactions that
are considered in this model, so we consider only modified ldl [12].

Activated macraphages, on being stimulated by ox-ldl, produce a large
amount of anti-inflammatory cytokines, for example interleukin-10 (il-10) [16].
These cytokines help abate lesion development by their various atheropro-
tective actions, such as inhibition of macrophage activation, production of
pro-inflammatory mediators, and many other actions that play major roles
in determining plaque stability [17]. hdl also inhibits plaque progression by
various antiatherogenic actions. Its major roles include cholesterol efflux from
foam cells, inhibition of the chemotaxis of monocytes, adhesion of leukocytes
to the endothelium and endothelial dysfunction [18]. However, experimental
studies suggest that these hdl particles fail to produce positive outcomes
in controlling the development of atherosclerosis in the absence of il-10 [19].
hdl particles, being activated by il-10, can help reduce the plaque size by
up to 60% in vivo [19, 17]. To model the concentration of activated hdl,
we consider that migrated hdl particles become activated by il-10, which is
released by macrophages when they are loaded with ox-ldl.

Using the above description of the mechanisms, we model the concentration
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of other species by

dm

dt
= σmc− ρm− dmm , (3)

dM

dt
= ρm− µMLox − dMM , (4)

dLox

dt
= σLM− µMLox − dLoxLox , (5)

dF

dt
= µMLox − µ1FH− dFF , (6)

dH

dt
= σHF− µ1FH− dHH . (7)

Equations (3)–(7) are dimensional model equations, and describe the follows
processes. Due to the presence of inflammatory mediators, monocytes migrate
into the intima at the rate σm, where they differentiate into macrophages at
the rate ρ, and have a natural decay rate dm. Macrophages consume ox-ldl
at the rate µ to form foam cells, and have a natural decay rate dM. ldl invade
the intima at the rate σL and become modified in the presence of macrophages.
Modified ldl is taken up by the macrophages at the rate µ, and has a natural
decay rate dLox . hdl migrate into the intima at the rate σH and become
activated by il-10, released upon the formation of foam cells. hdl removes
foam cells at the rate µ1. The parameters dF and dH define the natural
decay rates of foam cells and hdl, respectively. Table 1 lists all dimensional
parameters in equations (2)–(7), along with their physical meanings.

The model (2)–(7) is nondimensionalised using the transformations: t̃ =
dLox t , c = (rLox/dLox)c̃ and X = (σmrLox/d

2
Lox

)X̃ , where X = (m,M,Lox, F,H)
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Table 1: Description of the parameters that appear in the biochemical model.

Param. Description Unit
β production rate of mediators from endothelial

damage
pgmm−3s−1

rLox production rate of mediators induced by ox-
ldl

pgmm−3s−1

rF production rate of mediators induced by foam
cells

pgmm−3s−1

σm migration rate of monocytes s−1
σL invasion rate of ldl s−1
σH migration rate of hdl s−1
ρ rate at which monocytes differentiate into

macrophages
s−1

µ rate at which macrophages consume ox-ldl mm3 pg−1s−1
µ1 rate at which hdl remove foam cells mm3 pg−1s−1
KLox saturation constant for ox-ldl pgmm−3

KF saturation constant for foam cells pgmm−3

dc rate of decay of pro-inflammatory mediators s−1
dm rate of decay of pro-inflammatory mediators s−1
dM rate of decay of macrophages s−1
dLox rate of decay of ox-ldl s−1
dF rate of decay of foam cells s−1
dH rate of decay of hdl s−1
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and X̃ = (m̃, M̃, L̃, F̃, H̃) . Further, we define the dimensionless parameters

β̃ =
β

rLox
, α̃ =

KLoxd
2
Lox

σmrLox
, r̃F =

rF

rLox
, σ̃ =

KFd
2
Lox

σmrLox
, ε̃ =

dc

dLox
,

ρ̃ =
ρ

dLox
, κ̃ =

dm

dLox
, µ̃ =

µσmrLox
d3Lox

, γ̃ =
dM

dLox
, δ̃ =

σL

dLox
,

µ̃1 =
µ1σmrLox
d3Lox

, φ̃ =
dF

dLox
, ν̃ =

σH

dLox
, θ̃ =

dH

dLox
.

When nondimensionalised, the six governing equations (2)–(7) become, after
omitting the tildes,

dc

dt
= βf(t) +

L2

α2 + L2
+ rF

F2

σ2 + F2
− εc , (8)

dm

dt
= c− ρm− κm , (9)

dM

dt
= ρm− µML− γM , (10)

dL

dt
= δM− µML− L , (11)

dF

dt
= µML− µ1FH− φF , (12)

dH

dt
= νF− µ1FH− θH , (13)

with transformed initial conditions c(0) = m(0) = M(0) = L(0) = F(0) =
H(0) = 0 . In our model the function f(t) includes the effects of periodic
damage to the endothelium, and

f(t) = Θ(Aπ− t/Q) sin2(t/Q) , (14)

where A defines the number of repeated cycles of injury to the endothe-
lium, Q = 1/dLox and Θ(Aπ − t/Q) is the Heaviside function. Using the
transformation t̃ = dLox t , in nondimensional form

f(t) = Θ(Aπ− t) sin2(t) , (15)
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Table 2: Dimensionless parameters that appear in the biochemical and plaque
growth models. The parameters δ, µ and ν are chosen for bifurcation analysis.

Param. Value Param. Value Param. Value
β 0.05 [10] α 0.1 (estimated) σ 0.1 (estimated)
ε 1 [10] ρ 0.05 [11] γ 0.1 [13]
µ1 0.25 [13] φ 0.015 [13] θ 0.05 [13]
rF 0.04 [13] κ 0.01 [11]
δ 0.2 µ 0.2 ν 0.3

where tildes are again omitted. One unit of dimensionless time corresponds
to 12 hours in dimensional variables

(
dLox ∼ 1

12
h−1
)
[11]. Therefore, one cycle

A = 1 of injury and recovery to the endothelium in the dimensionless system
equates to approximately 36 hours worth of damage, which resembles the
time course of recovery of endothelial function after reperfusion or mechanical
injury [20]. Table 2 lists the dimensionless parameters, along with their values.

2.2 Plaque Growth Model

The plaque growth model is based on the concentration of the various species
considered in the biochemical model that accumulate beneath the damaged
part of the endothelial layer.

Define VI as the volume of the intima (bounded by the endothelial and
internal elastic layers of the artery) before onset of atherosclerosis. This
volume increases due to the accumulation of the various constituents of the
plaque. Using the governing equations (9)–(13), the volume of the intima at
time t+ ∆t is approximated to first order in ∆t as by Bulelzai et al. [11],

V(t+ ∆t) = V(t) +
∑

X∈{m,M,Lox,F,H}

(
VX
dX

dt

)
V(t)∆t , V(0) = VI , (16)

where V is the volume of the intima at time t, and Vm, VM, VLox , VF and VH
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are the volumes of each monocyte cell, macrophage cell, ox-ldl molecule,
foam cell and hdl molecule, respectively. The inflammatory mediators are
very small in size compared to other cells in the biochemical model, and are
thus ignored. We recast equation (16) as a differential equation of the the
intimal volume

dV

dt
=

∑
X=m,M,Lox,F,H

(
VX
dX

dt

)
V , V(0) = VI . (17)

We then define V = ṼVI and introduce a dimensionless parameter η =
(σmrLox/d

2
Lox

)VF to recast equation (17) in the dimensionless form, where
tildes are dropped,

dV

dt
=
ηV

VF

∑
X=m,M,L,F,H

VX
dX

dt
, V(0) = 1 . (18)

To model the growth in the outward direction, we assume that the outer
boundary of the plaque always takes the shape of a circular arc. Figure 1a
and its caption define the various geometrical parameters.

It follows from the geometry that

V =
s2

sina

( a

sina
− cosa

)
, L =

2as

sina
, h =

s

sina
(1− cosa) ,

where V is the volume of the circular segment bounded by the arc and the
chord that represents the endothelial layer. The outward growth of the plaque
is driven by the pressure Pb exerted by the blood on the wall. However, the
resistive pressure of the outer wall increases as the plaque continues to grow.
The resistive pressure exerted by the outer wall is measured by

P =
T

r+ h
≈ T
r
, r� h , (19)

where T is the tension in the outer wall which is approximated by [24]

T = λ(L− 2s) , (20)
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Figure 1: (a) An illustration of the plaque growth model. The arc length L,
footprint radius s, contact angle a and sagitta h characterise the outward
growth, and the basal drag y(x, t) characterises the inward growth of the
plaque, where x represents the distance along the artery wall. Here r designates
the initial radius of the lumen. (b) Pressure load on endothelial layer Peff
versus total volume of the plaque.
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where λ is Young’s modulus of the outer wall. The outward growth stops
when Pb is surpassed by P. Hence, by substituting the condition P = Pb along
with equation (20) into equation (19), we obtain the threshold contact angle
a0 =

√
3Pbr/λs , which determines the maximum plaque volume V0 that the

artery wall can compensate for by dilation.

Once the outward growth is stopped, further increase in plaque volume results
in a pressure load Peff operating at the endothelial layer, as demonstrated in
Figure 1b. The pressure load Peff shown in this figure defines the pressure
potential per unit volume V0 which is formulated using the linear end-diastolic
pressure-volume relation. This pressure load induces inward growth of the
plaque which is modelled by

∂y

∂x
=
Peff

E
, Peff =

P0 Veff

V0
, (21)

where, P0 = T0
r
= Pb and

Veff =

{
V − V0 if V > V0 ,
0 if V < V0 .

Equation (21) is supplemented by the boundary conditions y(±s) = ∂y
∂x
(±s) =

0 . The parameters appearing in the plaque growth model are listed in Table 3.

3 Results and discussion

3.1 Simulations of the dynamics

We first solve the biochemical model using the ode15s routine in Matlab.
Table 2 summarises the parameter values used in the numerical simulations,
unless stated otherwise. Figure 2 presents the dimensionless concentrations of
the pro-inflammatory mediators c, and the species m, M, L, F and H. This
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Table 3: List of parameters that appear in the plaque growth model.

Param. Description Value
Vm Mean cell volume of monocytes 10−17mm3 [11]
VM Mean cell volume of macrophages 10−14mm3 [11]
VLox Mean volume of ox-ldl particles 10−21mm3 [11]
VF Mean cell volume of foam cells 10−08mm3 [11]
VH Mean volume of hdl particles 10−16mm3 [21]
λ Young’s modulus of the adventi-

tial layer
900 kPa [22]

E Young’s modulus of the endothe-
lial layer

24.5 kPa [23]

Pb Normal blood pressure 120mmHg
η Dimensionless parameter 0.6 [12, 13] & estimated

figure illustrates that, following a single cycle of injury to the endothelium
(A = 1), we get a healthy outcome; the release of inflammatory mediators
stops as cells are removed and the injured endothelial cell is replaced by a
healthy one.

However, an inflammatory response is observed for repeated injuries (say
A = 4 , Figure 3). The increased initial concentration of inflammatory
mediators from repeated injuries results in an increased level of other cells,
which ultimately results in increasing the concentrations of inflammatory
mediators and thereby establishes a cycle of inflammation. Consequently,
the system settles to a non-zero equilibrium which physiologically relates to
chronic inflammation as the inflammatory process remains active. The system
also behaves in a qualitatively similar manner to A = 1 and a sufficiently
large value of δ (not shown). This is equivalent to high blood ldl cholesterol
levels and hence agrees strongly with the pathophysiology [7].
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Figure 2: Numerical solutions for δ = 0.2 > δc and A = 1 . The inflammatory
process induced by a single cycle of injury (A = 1) to the endothelium is
not strong enough to drive the development of an atherosclerotic lesion: the
release of inflammatory mediators stops upon the removal of all cells and
hence, the damage is successful repaired.
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Figure 3: Numerical solutions for δ = 0.2 > δc and A = 4 . An increased
initial concentration of inflammatory mediators from repeated injuries (A = 4)
results in an increased level of other cells, which ultimately results in increasing
the concentrations of inflammatory mediators and thereby establishes a cycle
of inflammation.
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Figure 4: Numerical solutions for a large uptake rate µ of ox-ldl by
macrophages. The pro-inflammatory process induced by ox-ldl subsides
greatly for a large µ but a relatively weak inflammatory process induced by
foam cells remains active.
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Figure 5: For sufficiently large values of µ and ν, ox-ldl and foam cells are
successfully removed from the lesion, hence the system reverts to the healthy
state.
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3.2 Bifurcation analysis

The bistability criteria of the system, as discussed in Section 3.1, is confirmed
by the bifurcation analysis. The system of equations (8)–(13) always has
a trivial steady state which is stable for all parameter values. However,
when the value of δ is increased beyond a threshold δc ∼ 0.034 (calculated in
MatCont [25]), the system possesses another eleven steady states (calculated
using Maple). However, only two of these states are biologically reasonable;
one is stable and the other one is a saddle point. The solid branch of
the equilibrium concentration of inflammatory mediators curve, shown in
Figure 6a, is stable, while the dashed branch is unstable.

To gain a better understanding of the behaviour of the system, we study
the bifurcations with increased biological complexity. We first assume that
there are no foam cells and no hdl inside the intima, that is, F = 0 so
rF = 0 , and H = 0 . The system reduces to a 4× 4 system which is bistable
if δ > µε(ρ+κ)

ρ
α2 . The parameter space for δ and µ, presented in Figure 6b,

shows that the system is monostable for a sufficiently large value of µ (uptake
rate of ox-ldl by the macrophages), which implies that the system returns
to a healthy state when ox-ldl are removed from the lesion.

We now assume that there are foam cells but no hdl inside the intima,
that is F 6= 0 so rF 6= 0 , and H = 0 . In this case, the bistability of the
system no longer depends on the value of µ (Figure 6c). For large µ the
pro-inflammatory process induced by ox-ldl subsides greatly but still a
relatively weak inflammatory process induced by foam cells remains active.
Low level of cells and inflammatory mediators are observed following this
weak inflammation (Figure 4).

Finally, assume that F 6= 0 , so rF 6= 0 , and H 6= 0 . The bifurcation diagram
presented in Figure 6d demonstrates that an increasing value of ν brings the
limit point curve (the curve dividing the parameter space) back to its original
position. Therefore, corresponding to sufficiently large values of µ and ν,
ox-ldl and foam cells are successfully removed from the lesion, hence we get
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Figure 6: Bifurcation plots showing the (dimensionless) equilibrium pro-
inflammatory mediators concentration as a function of the invasion rate of
ldl δ in (a), and the parameter spaces corresponding to different biological
scenarios for δ and µ in (b)–(d).
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(d) F 6= 0 , rF 6= 0 , H 6= 0 .
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a healthy outcome, as shown in Figure 5.
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Figure 7: Plaque shapes at different dimensionless times.
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3.3 Plaque growth simulations

We solve the plaque growth model using the values corresponding to the
outcome of the biochemical model that are shown in the Figure 3. The lumen
radius r and the footprint radius s are both considered to be 2mm. The
plaque volume V at different times, obtained by integrating equation (18), is
used to simulate the plaque growth. The plaque growth towards the outer
wall occurs as long as V < V0 , where the boundary always takes the shape
of a circular arc, as shown by the curves below the zero axis in Figure 7.
However, an artery in a patient with low physical activity, high cholesterol
and high blood pressure may fail to produce this outward growth by dilation
due to the artery’s high stiffness.

The curves above the zero axis in Figure 7 show the shape of the plaque cap
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at different positions and times. The plaque starts to grow into the lumen
when V > V0 ; however, this growth stops when the cells considered in the
biochemical model settle to their equilibrium values.

4 Conclusions

We presented a mathematical model of the formation of an atherosclerotic
plaque based on the response-to-injury hypothesis of atherosclerosis, which
was originally proposed by Ross [26]. The compensatory response of the
immune system initiates a series of complex biochemical and cellular pro-
cesses in response to an injury, which may result in the development of an
atherosclerotic lesion if the immune system becomes corrupted and fails to
replace the injured endothelium successfully. This failure occurs because of
an imbalance between the pro- and anti-inflammatory actions taken by some
cells and cellular species that are relevant to the repair mechanism and lesion
development. Elevated levels of modified low density lipoprotein (ox-ldl)
in the vessel wall is one of the major factors that instigates this failure by
triggering a self-accelerating inflammatory process.

Section 2.1 developed a mathematical model describing the earliest events in
the formation of an atherosclerotic plaque. Analysis of the model shows that,
following an injury to the endothelium, an atherosclerotic plaque is initiated if
the migration rate of ldl cholesterol exceeds a threshold value, which strongly
complies with the pathophysiology of atheroslcerotic plaques initiation [7, 6].
A similar threshold value for ldl migration was also suggested by Bulelzai and
Dubbeldam [11], and Chalmers et al. [12]. These studies [11, 12] also suggested
a minimum migration rate of ldl for a self-accelerating inflammatory process
to be initiated. However, the threshold values suggested in these studies are
numerically higher than those found from our model, apparently due to the
exclusion of the effects of endothelial injury in their modelling. We found
that a comparatively low migration rate of ldl can drive the development of
atherosclerosis if the endothelium undergoes repetitive injuries.
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Formation of foam cells is considered to be a major hallmark of early stage
atherosclerotic lesions [16]. The series of bifurcation analyses conducted in
Section 3.2 demonstrates that a large uptake rate of ox-ldl by macrophages
results in a reduced abundance of ox-ldl particles in the lesion. However,
the self-accelerating inflammatory process still remains active due to the pro-
inflammatory cytokines that are produced during the formation of foam cells.
Our study also includes activated high density lipoprotein (hdl) particles,
assumed to be activated in the presence of anti-inflammatory cytokines (il-10)
and produced during the formation of foam cells. We found that raising the
migration rate of hdl reduces the severity of the inflammation, and this
inflammation may completely stop for a sufficiently large migration rate
of hdl.

Atherosclerosis arises as the consequence of multiple dynamical cell processes.
Our model provides improved qualitative and quantitative insights into the
resolution of inflammation. Analysis of this model suggests that a single
therapeutic target, such as lowering the blood cholesterol level (ldl) or raising
the good cholesterol level (hdl) may not produce the expected outcome of
preventing atherosclerosis. Multiple therapeutic targets, including improve-
ment of endothelium health, may be required to produce the desired outcome.
However, our model does not include the formation of a necrotic core or
fibrous cap. To make the model more quantitatively reliable, several other cell
types, such as smooth muscles cells, T-cells and some other cellular species
that take part in the development of complex atherosclerotic lesions and
induce the plaque cap disruption, need to be taken into consideration.

Another novel aspect of our study is the inclusion of both inward and outward
expansions of the arterial wall in plaque growth modelling. This plaque
growth model can be coupled with a more sophisticated mathematical model
of later-stage atherosclerotic plaque to investigate mechanical properties of
the plaque.
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