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Maximizing product concentration in a
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Abstract

We develop a mathematical model describing the operation of
autothermal processes. Autothermal reactors provide considerable
thermal efficiency over conventional reactors. The reaction mechanism
investigated is A→ B→ C, where the reactions occur in a two reactor
cascade. Specific features of coupled endothermic and exothermic
reactions are taken into account. Particular considerations are presented
and discussed for different catalysts to obtain 90% conversion into
product.
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1 Introduction

Autothermal processes are important when exothermic reactions, in which
the system releases heat, are coupled with endothermic reactions, in which
the system absorbs heat. In conventional reactors, energy must be supplied
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for endothermic reactions to proceed. This is typically supplied by external
burners or interstage heaters. In autothermal reactors the required heat is
supplied by exothermic reactions. If the autothermal system is correctly
set up, then the overall reaction process is energy neutral. Autothermal
reactors are an attractive solution in the implementation of high temperature
reactors for reactions with overall exothermicity because of their high thermal
efficiency. The absence of an external burner and the accompanying power
supply makes an autothermal process both simpler and less expensive. A
promising application of autothermal processes is in improving the operating
conditions by minimizing heat consumption [6]. In particular, autothermal
reactors have potential applications in the steam reforming of light alkanes
for hydrogen generation in on-board vehicular fuel cells or in the production
of syngas, a gaseous fuel that is a mixture of hydrogen, carbon monoxide and
often carbon dioxide [8]. Autothermal reactors are efficient in the production
of H2 from steam reforming of methanol [9] and in optimising oxidation and
steam reforming for methane conversion [11].

The world is currently facing critical challenges in terms of meeting future
energy requirements while reducing green house emissions. With rising oil
prices and a possible ‘peak’ in oil resources, the conversion of natural gas into
syngas for production of liquid fuels and/or hydrogen will become crucial for
the economy and standard of living. Our aim is to develop a mathematical
model which describes the operation of autothermal processes to maximize
the product concentration.

2 Chemistry of the model

We consider a chemical reaction in which a reactant A is converted to a
product C. The reaction mechanism consists of two steps. In the first step
the reactant A is converted into an intermediate B. In the second step the
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Figure 1: Prototype reactor configuration, where A0 is the feed concentration,
T0 is the feed temperature, and q is the flow rate.

T1, Catalyst 1 T2, Catalyst 2- - -

Ta,1 Ta,2
q, T0,A0 A2,B2,C2A1,B1

intermediate B is converted into the final product C:

A→ B, (1)
B→ C. (2)

We assume that the first reaction is endothermic, that is, heat is required to
drive the reaction, whereas the second reaction is exothermic, that is, heat
is produced by the reaction. The reaction is assumed to take place in a two
reactor cascade. The catalyst for reaction (1) is placed in reactor one whilst
the catalyst for reaction (2) is placed in reactor two. Consequently, the first
(second) reaction only occurs in the first (second) reactor.

Figure 1 shows the processes that occur in the reactor cascade. The con-
centrations of the reactant A and the intermediate B leaving reactor one
are A1 and B1, respectively. The concentrations of the reactant A and the
intermediate B and the product C leaving reactor two are A2, B2 and C2,
respectively. The coolant temperatures for the two reactors are Ta,1 and Ta,2,
respectively. The temperatures of the reacting mixtures in reactor one and
two are T1 and T2, respectively.

We are particularly interested in identifying catalysts and reactor opera-
tion conditions that ensure a minimum of 90% conversion of reactant A to
product C.
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3 Model equations

In Section 3.1 we introduce the assumption for the reaction schemes (1) and (2).
In Section 3.2 we give the model equations for the reaction schemes (1) and (2).
In Section 3.3 we non-dimensionalise the model.

Gray and Scott [5, Chap. 7] overviewed the model equations for the classic
chemical engineering problem of a non-isothermal continuously stirred tank
reactor. Recall that our reactor configuration consists of a cascade of two
reactors. The effluent stream from reactor one provides the feed stream for
reactor two. Consequently, our model equations are obtained by straighfor-
wardly adapting the model for a single reactor. Dangelmayr and Stewart [2]
studied the model equations for a similar system, in which an exothermic
reaction occurs in both reactors.

3.1 Model assumptions

It is assumed that the reactor vessels are well stirred. We consider a feed
temperature to be realistic if T0 6 1000K. It is often useful to characterise a
chemical reaction in terms of a ‘characteristic temperature’ [10]. We write
the pre-exponential factor ai in terms of a characteristic temperature Tci [10]:

ai =
Eiα

RT 2ci
exp

[
Ei

RTci

]
,

for reactor i = 1, 2 , where Ei is the activation energy, R is the ideal gas
constant, and α is a constant heating rate.

The residence time in both reactor is defined by

τi =
Vi

q
,

for i = 1, 2 , where Vi is the reactor volume and q is the flow-rate.
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3.2 Dimensional equations

The system of equations in the first reactor are

V1
dA1

dt
= q(A0 −A1) − V1a1 exp

[
−E1
RT1

]
A1 , (3)

V1
dB1

dt
= −qB1 + V1a1 exp

[
−E1
RT1

]
A1 , (4)

V1
dC1

dt
= −qC1 , (5)

cpgρgV1
dT1

dt
= qcpgρg(T0 − T1) −Q1V1a1 exp

[
−E1
RT1

]
A1

− J1χ1S1(T1 − Ta,1) . (6)

The system of equations in the second reactor are

V2
dA2

dt
= q(A1 −A2) , (7)

V2
dB2

dt
= q(B1 − B2) − V2a2 exp

[
−E2
RT2

]
B2 , (8)

V2
dC2

dt
= q(C1 − C2) + V2a2 exp

[
−E2
RT2

]
B2 , (9)

cpgρgV2
dT2

dt
= qcpgρg(T1 − T2) +Q2V2a2 exp

[
−E2
RT2

]
B2

− J2χ2S2(T2 − Ta,2) . (10)

The nomenclature is defined in Table 1.

The concentrations flowing into reactor two are the concentrations exiting
from reactor one. Similarly, the temperature of the fluid entering reactor two
is equal to that leaving reactor one.

We are interested in the long-time behaviour of the reactor cascade. The
system of eight equations, (3)–(10), can be reduced to a system of five
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Table 1: Definitions and units of terms that appear in the model equations (3)–
(10). The index i takes values 1 or 2, referring to a property in either reactor
one or reactor two.

parameter definition
Ai, Bi, Ci (molm−3) concentrations of reactant A, intermediate B

and product C
A0 (molm−3) concentration of reactant A in the feed
Ti (K) temperature inside the reactors
T0 (K) feed temperature
Ta,i (K) temperature of the reactor walls
Ei (Jmol−1) activation energy
Qi (Jmol−1) modulus of a heat of reaction
Si (m2) internal surface area
Vi (m3) reactor volume
R (JK−1mol−1) ideal gas constant
ai (s−1) pre-exponential factor
Ji a constant, Ji = 0 in the adiabatic case and

Ji = 1 in the diabatic case
q (m3s−1) flow-rate
t (s) time
χi (J s−1m−2K−1) heat transfer coefficient between the reaction

mixture and the reactor walls
cpg (JK−1kg−1) heat capacity of the reaction mixture
ρg (kgm−3) density of the reaction mixture
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equations—equations for B1, C1 and C2 are not required. As we are interested
in the long-time behaviour we study only the steady-state solutions and
determine their behavior.

3.3 Dimensionless equations

The reduced system of non-dimensional equations in the first reactor obtained
from equations (3)–(6) is

dA∗
1

dt∗
=
1−A∗

1

τ∗1
− a∗

1 exp
[
−E∗1
θ1

]
A∗
1 , (11)

dθ1

dt∗
=
θ0 − θ1
τ∗1

−Q∗
1a

∗
1 exp

[
−E∗1
θ1

]
A∗
1 − J1χ

∗
T ,1(θ1 − θa,1) , (12)

B∗
1(t

∗) = 1−A∗
1(t

∗) , (13)
C∗
1(t

∗) = 0 . (14)

The reduced system of non-dimensional equations in the second reactor
obtained from equations (7)–(10) is

dA∗
2

dt∗
=
A∗
1 −A

∗
2

τ∗2
, (15)

dB∗
2

dt∗
=
1−A∗

1 − B
∗
2

τ∗2
− a∗

2 exp
[
−1

θ2

]
B∗
2 , (16)

dθ2

dt∗
=
θ1 − θ2
τ∗2

+Q∗
2a

∗
2 exp

[
−1

θ2

]
B∗
2 − J2(θ2 − θa,2) , (17)

C∗
2 = 1−A

∗
2 − B

∗
2 . (18)

In the above equations we use the dimensionless concentrations A∗
i = Ai/A0 ,

B∗
i = Bi/A0 , C∗

i = Ci/A0 , dimensionless temperatures θi = (RTi)/E2 where
i = 1, 2 , and dimensionless time t∗ = (χ2S2t)/(cpgρgV2) .

The dimensionless parameters are: the temperature in the feed θ0 = (RT0)/E2 ;
the temperature of reactor walls θa,i = (RTa,i)/E2 ; the activation energy
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in reactor one E∗1 = E1/E2 ; the modulus of a heat of reaction Q∗
i =

(A0RQi)/(E2cpgρg) ; the characteristic temperature T∗ci = (RTci)/E2 ; the
volume V∗ = V1/V2 ; the residence time τ∗i = (χ2S2τi)/(cpgρgV2) ; the heat-
transfer rate in reactor one χ∗T ,1 = (χ1S1V2)/(χ2S2V1) ; the heating rate
constant α∗ = (αρgcpgRV2)/(χ2E2S2) ; the pre-exponential factor in reactor
two a∗

2 = (α∗/T∗2c2 ) exp [1/T∗c2] ; and the pre-exponential factor in reactor one

a∗
1 =

α∗V∗E∗1
T∗2c1

exp
[
E∗1
T∗c1

]
. (19)

4 Results and Discussion

All calculations performed in this article use the the parameter values stated
in Appendix A, unless otherwise stated.

4.1 Achieving 90% conversion in reactor one

To achieve 90% conversion of the reactant A into the product C we must
achieve at least 90% conversion of the reactant into the intermediate species B
in the first reactor. By taking a suitable linear combination of equations (11)
and (12) we find an equation giving the feed temperature required to achieve
a specified steady-state value of the reactant concentration:

θ0 =
−(1+ J1τ

∗
1χ

∗
1)E

∗
1

log [(1−A∗
1)/(a

∗
1A

∗
1τ

∗
1)]

+Q∗
1(1−A

∗
1) − J1τ

∗
1χ

∗
1θa,1 . (20)

Recall from equation (19) that the pre-exponential factor a∗
1 depends on

the activation energy E∗1 . Differentiating (20) with respect to the activation
energy E∗1 we obtain

dθ0

dE∗1
= −(1+ J1τ

∗
1χ

∗
1)

(
E∗1 + T

∗
c1 + T

∗
c1 log [(1−A∗

1)/(a
∗
1A

∗
1τ

∗
1)]

T∗c1 (log [(1−A∗
1)/(a

∗
1A

∗
1τ

∗
1)])

2

)
< 0 , (21)
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Table 2: The inflow temperature T0 (K) required to achieve 90% conversion in
the first reactor A∗

1 = 0.1 as a function of the activation energy E1 (kJmol−1)
and the characteristic temperature Tc1 (K). The heat of endothermicity is
Q1 = 205.8 kJmol−1 and the coolant temperature is Ta,1 = 800K.

Tc1 T0 (E1 = 50) T0 (E1 = 80) T0 (E1 = 120) T0 (E1 = 180)
342 1021.9 964.6 940.6 927.4
442 1258.6 1126.2 1076.1 1049.5
542 1602.7 1319.8 1226.5 1179.4

for τ∗1 < [(1−A∗
1)/(a

∗
1A

∗
1)] exp [1+ (E∗1/T

∗
c1)] (this holds for our parameter

values in Appendix A).

Equation (21) shows that the required inflow temperature is a decreasing
function of E∗1 , that is, a lower activation energy requires a higher inflow
temperature to achieve a specified conversion.

Differentiating (20) with respect to the characteristic temperature T∗c1, and
using equation (19), we obtain

dθ0

dT∗c1
=

E∗1(1+ J1τ
∗
1χ

∗
1)(2T

∗
c1 + E

∗
1)

T∗2c1 {log [(1−A∗
1)/(a

∗
1A

∗
1τ

∗
1)]}

2
> 0 . (22)

Equation (22) shows that the required inflow temperature is an increasing
function of Tc1, that is, a higher characteristic temperature requires a higher
inflow temperature to achieve a specified conversion.

Equations (21) and (22) show that the ideal catalyst for reactor one has a
high activation energy E1 and a low characteristic temperature Tc1. Returning
to dimensional values, Table 2 shows feed temperatures T0 that obtain a
conversion of 90% of the reactantA1 as a function of the catalyst parameters E1
and Tc1. This table shows that for a high value of the endothermicity Q1,
the required feed temperature T0 is almost always unrealistic, that is, higher
than 1000K.
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Figure 2: The parameter values required to achieve 90% conversion in the
first reactor as a function of the activation energy E1 and the characteristic
temperature Tc1. The feed temperature T0 = 1000K and the coolant tem-
perature Ta,1 = 800K. The heat of endothermicity Q1 is (a) 50 kJmol−1,
(b) 100 kJmol−1, (c) 150 kJmol−1 and (d) 205.8 kJmol−1. All other param-
eters values are given in Appendix A.

Figure 2 shows the parameter values required to achieve 90% conversion of
the reactant A as a function of the heat of the activation energy E1 and the
characteristic temperature Tc1 when the inflow temperature T0 is fixed to its
maximum value (1000K) for different values of the heat of endothermicity Q1.
This figure confirms that there is a small range of parameter values for which
90% conversion is achieved for highly endothermic reactions.

Differentiating (20) with respect to the endothermicity parameter Q∗
1 we
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obtain
dθ0

dQ∗
1

= −A∗
1 + 1 > 0 , (23)

as 0 < A∗
1 < 1 . Equation (23) shows that the required feed temperature is an

increasing function of Q∗
1 , that is, more endothermic reactions require a higher

feed temperature to achieve a specified conversion, as shown in Figure 3. This
figure show the inflow temperature required to achieve 90% conversion of
the reactant A1 in the first reactor as a function of the activation energy E1,
for different values of the characteristic temperature Tc1 and the heat of
endothermicity Q1. Feed temperatures higher than 1000K are considered
to be unachievable inside these reactors. Figure 3 confirms that it is more
difficult to find a suitable catalyst for more highly endothermic reactions.
When the reaction is weakly endothermic there is a larger range of suitable
catalysts.

Differentiating (20) with respect to the coolant temperature θa,1 we obtain

dθ0

dθa,1
= −J1τ

∗
1χ

∗
1 < 0 . (24)

Equation (24) shows that the required inflow temperature is a decreasing
function of θa,1, that is, a higher coolant temperature requires a lower inflow
temperature to achieve a specified conversion. Figure 4 shows that feed
temperature T0 is always realistic for any value of the coolant temperature Ta,1.

In conclusion, in order to achieve 90% conversion in the first reactor at a
realistic feed temperature T0 < 1000K, the characteristic temperature Tc1
and the heat of endothermicity Q1 are required to be small, whereas the
activation energy E1 is required to be large. Finally, increasing the coolant
temperature decreases the required value for the feed temperature.
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Figure 3: The feed temperature T0 required to achieve 90% conversion in
the first reactor as a function of the activation energy E1 for (top) Q1 =
205.8 kJmol−1 and (bottom) Q1 = 50 kJmol−1. The coolant temperature is
Ta,1 = 800K and the activation energy is E2 = 50 kJmol−1. The dashed lines
show the maximum value of the feed temperature. All other parameters are
given in Appendix A.
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Figure 4: The feed temperature T0 required to achieve 90% conversion in the
first reactor as a function of the coolant temperature Ta,1. The characteristic
temperature Tc1 = 342K, the activation energy E1 = 80 kJmol−1 and the
activation energy E2 = 50 kJmol−1. The heat of endothermicity Q1 is
(a) 50 kJmol−1, (b) 100 kJmol−1, (c) 150 kJmol−1 and (d) 205.8 kJmol−1.
All other parameters are given in Appendix A.

4.2 Achieving 90% conversion in reactor two

In this section we fix the catalyst in the first reactor to ensure slightly more
than 90% conversion of the reactant A∗

1 . We investigate how the choice of
the catalyst in the second reactor effects the steady-state concentration C∗

2 .
We consider the case E2 = 50 kJmol−1 and Q2 = 100 kJmol−1 and examine
different values for the characteristic temperature Tc2. Figures 5(a) and 5(b)
are steady-state diagrams with red and black lines indicating stable and
unstable states, respectively. The high branch is called the high conversion
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Figure 5: The steady-state structure in the diabatic reactor when Q1 =
100 kJmol−1, Q2 = 100 kJmol−1, E1 = 80 kJmol−1, E2 = 50 kJmol−1, Tc1 =
342 K, T0 = 680 K, Ta,1 = 800 K and: (a) Tc2 = 405 K; and (b) Tc2 = 435 K.
All other parameters are given in Appendix A.

(a) (b)

branch and the low branch is called the low conversion branch (both branches
are red).

The steady-state diagrams shown in Figures 5(a)–(b) and 6(a)–(c) exhibit
bistability, that is, there are parameter regions over which there are multiple
stable steady-state solutions. Bistability is a common phenomenon in open
chemically reacting systems with non-linear kinetics [5, 4]. In systems featur-
ing exothermic reactions, bistability typically comprises stable steady-state
solutions with ‘low’ and ‘high’ values.

In simplified systems the phenomena of bistability is easily demonstrated by
plotting ‘heat loss’ and ‘heat-generation’ on the same figure [5, Fig. 7.2].
The essence of the situation is that whilst heat-loss is a linear function of
the reactor temperature, heat-generation is a sigmoidal function of reactor
temperature, thus the presence of bistability is a consequence of the non-
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Figure 6: The steady-state structure in the diabatic reactor with the same
parameters as Figure 5, except: (a) Tc2 = 442 K; (b) Tc2 = 448 K; (c) Tc2 =
464 K; and (d) Tc2 = 511 K. All other parameters are given in Appendix A.

(a) (b)

(c) (d)
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linearity of the heat-generation curve. Depending upon parameter values
there are generically either one or three intersection points of the heat-loss
and heat-generation plots. Bilous and Amundson [1, Fig. 2] pioneered the
procedure of separating heat-loss and heat-generation and plotting them as
functions of the reactor temperature.

4.2.1 Scenario one Tc1 < 408K

Figure 5(a) shows the steady-state concentration diagram when Tc2 = 405K.
In this figure only positive values for the coolant temperature are shown as
negative values are unnphysical. Thus the low conversion branch and the
limit points are not shown as they occur on the negative axis.

In Figure 5(a) both the extinction and the ignition limit point bifurcations
occur at unphysical values (negative!) of the coolant temperature Ta,2. The
practical consequence of this is that the system always evolves to the high
conversion branch. Consequently, this steady-state diagram is the best possible
case as there is at least 90% conversion for all values of the coolant temperature
of reactor two; a high coolant temperature is not required to ensure high
product concentration. We consider the reaction in scenario one to be
autothermal because it does not require heat to be supplied in order to
obtain high conversion.

4.2.2 Scenario two 408K 6 Tc1 < 441K

The value of the characteristic temperature is increased to Tc2 = 435K. The
steady-state diagram is shown in Figure 5(b). The branches are disjoint as the
extinction limit point occurs for a negative value of the coolant temperature.
The value of the coolant temperature at the ignition limit point is now positive.
High conversion can be achieved by temporarily increasing the value of the
coolant temperature past that of the ignition limit point. It is then possible
to decrease the coolant temperature to a lower value, in theory any other
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value. This case is good in practice, provided that the coolant temperature
at the ignition limit point is not too high. If the critical value of the coolant
temperature is lower than 298K, then in practice this case is indistinguishable
from the first scenario.

4.2.3 Scenario three 441K 6 Tc1 < 444K

As the value of the characteristic temperature is further increased the next
transition occurs when the value of the coolant temperature at the extinc-
tion limit point moves into the right half plane. The steady-state diagram
following this transition is shown in Figure 6(a). As in the previous scenario
the system can be moved to the high conversion branch by increasing the
coolant temperature. However, there is now a minimum value of the coolant
temperature that is required in order to operate on the high conversion branch.
If the coolant temperature is decreased through this value, then the system
will ‘fall off’ onto the low conversion branch. This case is good in practice,
provided that the values of the coolant temperature at the extinction and
ignition limit points are not too high.

4.2.4 Scenario four 444K 6 Tc1 < 462K

The next transition to occur is when the value of the coolant temperature
at the ignition limit point moves through the maximum value of the coolant
temperature Ta,2 = 1000K. Figure 6(b) is a steady-state diagram for this
case. It is no longer possible to reach the high conversion branch by increasing
the coolant temperature. Instead, a temporary perturbation of some kind
must be imposed onto the system to ‘kick’ it from the low conversion branch
onto the high conversion branch.
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4.2.5 Scenario five 462K 6 Tc1 < 511K

Figure 6(c) shows the steady-state when both the ignition and extinction limit
points have moved through the maximum value of the coolant temperature.
It is now impossible to reach the high product conversion branch by either
increasing the coolant temperature or by imposing a ‘kick’. From a practical
perspective, catalysts falling into this category are of no interest.

4.2.6 Scenario six Tc1 > 511K

The final transition to occur is a cusp singularity, at which the two limit
points disappear. Figure 6(d) shows the steady-state diagram. For realistic
values of the coolant temperature only a low conversion is achieved.

4.3 Limit point unfolding diagram

In Section 4.2 we discussed how the steady-state diagram changes as the
characteristic temperature of the catalyst in the second reactor is increased.
Figure 7 shows an unfolding limit point diagram. The red branches are the
ignition (Lp) and extension (Ep) branches. The horizontal lines demonstrate
different transitions between steady-state diagrams. For example, the line
at Tc1 = 441K separates the steady-state diagram 5(b) from the steady-
state diagram 6(a). The values of the characteristic temperature at all the
transitions described earlier are identified in Figure 7. This shows that we
can determine the location of all the transitions from one figure.

5 Conclusions

We considered a kinetic model consisting of two sequential reactions, the
first being endothermic whilst the second being exothermic. It is assumed
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Figure 7: The unfolding diagram of the characteristic temperature for the case
E2 = 50 kJmol−1, Q2 = 100 kJmol−1, Q1 = 100 kJmol−1, E1 = 80 kJmol−1,
Tc1 = 342 K, T0 = 680 K and Ta,1 = 800K. All other parameters are given in
Appendix A. The labels (a)–(f) relate to the steady-state diagrams shown in
Figures 5(a)–(b) and 6(a)–(d), respectively.

that the reaction takes place in a reactor cascade in which catalysts for
the first and second reactions are placed in the first and second reactors,
respectively. As there is no recycling, the steady-state behaviour in the first
reactor is independent of that in the second reactor. We first examined the
operating conditions required in the first reactor to obtain a minimum of 90%
conversion. Realistic feed temperatures require high activation energy, high
coolant temperature, low characteristic temperature and low endothermicity
in the first reactor to achieve specified conversion. Thereafter, we fixed the
catalyst in the first reactor and examined how the choice of the catalyst and
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Table 3: The default parameter values are taken from [3], [7, pp. 110] and [10].

parameter value
S1 23.22576m2

S2 23.22576m2

V1 1.35936m3

V2 1.35936m3

A0 8008.298025molm−3

T0 403K
R 8.31441 JK−1mol−1

cpg 3.140 Jmol−1K−1

ρ 801.554× 103molm−3

χ1 851.735 J s−1m−2K−1

χ2 851.735 J s−1m−2K−1

α 20/60Ks−1

coolant temperature in the second reactor effected the product concentration
leaving the reactor. We found that there are six steady-state diagrams for the
chosen parameters. The best possible catalysts, which produce autothermal
behavior, have the ignition limit point occurring at an unphysical value
(negative!) of the coolant temperature.
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manuscript. The authors also thank Dr. J. E. Bunder for detailed commentary
on our article.

A Nomenclature

Tables 3 and 4 give all parameter values.
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Table 4: These physical parameters are chosen for illustration.

parameter value
E1 50× 103 Jmol−1 6 E1 6 180× 103 Jmol−1

E2 50× 103 Jmol−1

Q1 50× 103 Jmol−1 6 E1 6 180× 103 Jmol−1

Q2 100× 103 Jmol−1

Tc1 342K 6 Tc1 6 942K
Tc2 342K 6 Tc2 6 942K
Ta,1 300K 6 Ta,1 6 1000K
Ta,2 300K 6 Ta,2 6 1000K
τ1 8 s
τ2 8 s
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