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Internal symmetric waves of two-layer fluids
over an obstruction
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Abstract

We study two-dimensional capillary-gravity waves on the interface
between two immiscible, inviscid and incompressible fluids of differ-
ent constant densities bounded by two horizontal rigid boundaries
with small obstructions with compact support. A forced modified
Korteweg–de Vries equation is derived as a model equation without
assuming that the fluid is of constant depth at far upstream. Various
new types of steady solutions have been obtained numerically.
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1 Introduction

A two-dimensional flow of immiscible, inviscid and incompressible fluids of
different constant densities, bounded by two horizontal rigid boundaries is
considered as in Figure 1. Let us assume that the object at the bottom is
moving at a constant speed along lower boundary. By deploying a Lagrangian
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moving coordinate system, the problem is reduced to a steady state, two
layer, flow past an obstruction.

Shen, Shen and Sun [1] developed an asymptotic theory for steady state,
single layer, flow of small amplitude past an obstruction and derived the
Forced Korteweg-de Vries equation (fkdv). Choi, Sun and Shen [2, 3] de-
rived a Forced Modified K-dV equation (fmkdv) and Forced Extended K-dV
equation on two-layer flows when the fkdv theory fails in two layer flows.
Choi, Lim, Ahn and Park [4] also developed an asymptotic theory and de-
rived the Forced Korteweg-de Vries equation for steady state, single layer,
flow of small amplitude past an obstruction without assuming that the fluid
is of constant depth far upstream. In this paper, we consider the same fluid
domain as in [2] and the same type of fmkdv is derived when the density
ratio is the square of depth ratio. However, we do not assume that the in-
terface between two fluids is constant far upstream. New types of symmetric
solutions of the fmkdv are found by considering periodic wave solutions for
the waves ahead of an obstruction.

2 Derivation of the forced modified KdV

equation

The flow under consideration in Figure 1 has following governing equations
and boundary conditions [2]. In the domains Ω∗±,

u∗±x∗ + w∗±
z∗ = 0 ,

u∗±u∗±x∗ + w∗±u∗±z∗ = −p∗±z∗ /ρ∗± ,

u∗±w∗±
x∗ + w∗±w∗±

z∗ = −p∗±z∗ /ρ∗± − g .

At the interface z∗ = η∗ ,

u∗±η∗x∗ − w∗± = 0 ,
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p∗+ − p∗− = T ∗η∗x∗x∗/
(
1 + (η∗x∗)

2
)3/2

.

At the rigid boundaries z∗ = H∗±(x∗) ,

w∗± − u∗±H∗±
x∗ = 0 ,

where (u∗±, w∗±) are velocity vectors, ρ∗± are constant densities, p∗± are
pressures and g is the gravitational acceleration.

Let L be the horizontal length scale and H be the vertical length scale,
assuming that, far upstream, the interface of two fluids is periodic and
H is the mean depth of the lower fluid. Assume ε = (H/L) � 1 and
introduce following variables: x = x∗/L , z = z∗/H , u± = u∗±/

√
gH ,

w± = ε−1w∗±/
√

gH , p± = p∗±/ρ∗−gH , η = ε−1η∗/H , T = T ∗/ρ∗−gH2 ,
ρ± = ρ∗±/ρ∗− , h±0 = H∗±/H . Then the above equations become nondimen-
sionalized. Let ρ+ = ρ , ρ− = 1 , h+

0 = h+ = h , and h−0 = h− + ε3b(x) with
the conditions that h− = −1 and b(x) has finite support. In addition, let u,
w and p possess asymptotic expansions of the form

φ(x, z, ε) ∼ φ0 + εφ1 + ε2φ2 + · · · ,

with u±0 = u0 = constant, p±0 = −ρ±z and w±
0 = 0 .

From the first order approximation, in h− < z < 0 and 0 < z < h+ ,

u±1x + w±
1z = 0 , (1)

u0u
±
1x = −p±1x/ρ

± , (2)

p±1z = 0 ; (3)

with w+
1 = w−

1 at z = 0 , (4)

p+
1 − p−1 = −η(ρ+ − ρ−) at z = 0 , (5)

w±
1 = 0 at z = h± . (6)

Equation (3) implies that p±1 are functions of x only. From Equations (1),
(2) and (6), it follows that

w±
1 = (z − h±)p±1x/(u0ρ

±) . (7)
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From Equations (4) and (5)

p±1x = c±1 ηx , (8)

where c+
1 = ρ(ρ− 1)/(h + ρ) , c−1 = h(1− ρ)/(h + ρ) . From Equation (2),

u±1 = −η(c±1 /u0ρ
±) + λ1(z) , (9)

where λ1(z) are arbitrary functions of z. Note that we obtain u±1 , w±
1

and p±1 in terms of η. In a similar way, one can find expressions for u±2 (x, z)
and w±

2 (x, z):

u±2 =
c±1

u2
0ρ
±

[
λ1(z)− (z − h±)λ1z(z)

]
η − 1

2

c±2
1

u3
0ρ
±2

η2

− 1

u0ρ±

(c2

2
η2 + c3η

)
+ λ2(z) ,

w±
2 = 2

(
c±2
1

u3
0ρ
±2

+
c2

2u0ρ±

)
ηηx(z − h±)

+

{
c3

u0ρ±
(z − h±)− c±1

u2
0ρ
±

[
2

∫ z

h±
λ1(z) dz − (z − h±)λ1(z)

]}
ηx ,

where

N =

(
h+

u0ρ+
− h−

u0ρ−

)
,

c2 =
1

N

{
2

(
− c+

1

u0ρ+
+

c−1
u0ρ−

)
−

[
(h+)

c+2
1

u3
0ρ

+2
− (−h−)

c−2
1

u3
0ρ
−2

]}
,

c3 =
−1

N

{
c+
1

u2
0ρ

+

[
2

∫ 0

h+

λ1(z) dz + (h+)λ1(0)

]
− c−1

u2
0ρ
−

[
(2

∫ 0

h−
λ1(z) dz + (h−)λ1(0))

]}
.

Here, λ2(z) are arbitrary functions of z. Derivation of the fmkdv equation
requires kinematic condition only for u±1 , w±

1 , u±2 , w±
2 and w±

3 . w±
3 can be
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derived similarly and we omit the expression of w±
3 . Since εu±ηx−w± = 0 at

z = εη , from the zeroth order of the asymptotic expansions of u− and w−, we
obtain u2

0 = h(1−ρ)/(ρ + h) . Assuming ρ = h2 and λ1(z) = 0 , the following
Forced Modified K-dV equation (fmkdv) is obtained from the third order
expansion of the kinematic condition,

2ληx + Aη2ηx + Bηxxx = Cbx(x) ,

where

2λ = λ2(0) +

∫ 0

−1

λ2(z) dz +
ρ

ρ + h

(
1

h

∫ 0

h

λ2(z) dz +

∫ 0

−1

λ2(z) dz

)
,

A =
6ρ(1− ρ)(1 + h)2

u0(ρ + h)3
,

B =
u0h

3(ρ + h)

(
3T

u2
0

− (1 + ρh)

)
, and C = (u0 + 1) .

We note that if λ1(z) 6= 0 and ρ 6= h2 , fkdv is derived and the same analysis
as in [4] can be carried out.

3 Forced modified KdV equation

We consider the above fkdv this problem into two parts according to τ >
τ0 = (1 + ρh)/3 and τ < τ0 , where τ = T/u0

2 .

3.1 τ > τ0

Let τ > τ0 . We rewrite the fmkdv equation as

ηxxx = −a1η
2ηx + a2ηx + a3bx ,
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where

a1 =
6ρ(1− ρ)(1 + h)2

hu0
2(τ − τ0)(ρ + h)2

> 0 ,

a2 =
−2λ(ρ + h)

hu0(τ − τ0)
,

a3 =
(u0 + 1)(ρ + h)

hu0(τ − τ0)
> 0 .

Integration of the equation in x leads to

ηxx = −1

3
a1η

3 + a2η + a3b(x) . (10)

When b(x) = 0 , (10) has the following periodic solution if d > 0 [2],

η = ξ
1/2
0 cn(γ(x− x+), k), (11)

where η(x0) = α , ηx(x0) = β , d = β2 + a1α
4/6 − a2α

2 , ξ0 = (3a2 +
3
√

a2
2 + 2a2d/3)/a1 , ξ1 = (3a2−3

√
a2

2 + 2a2d/3)/a1 , γ = (a1(ξ0− ξ1)/6)1/2 ,
k2 = ξ0/(ξ0 − ξ1) < 1 , x0 is a fixed point and x+ is a phase shift. If
d ≤ 0 , there is no periodic solution of (10) with b(x) = 0 . By using (11) on
{x | b(x) = 0} and by using a matching process [2], symmetric solutions of
Equation (10) can be constructed numerically when b(x) is symmetric. For
numerical computation, we assume that η has a local minimum α < 0 at
x0 < −1 and b(x) =

√
1− x2 for x ∈ [−1, 1] and 0 elsewhere. ρ and h are

fixed to ρ = 0.25 and h = 0.5 , respectively, in the numerical studies below.

Depending on the location of the local minimum point x0 and λ and α of
the wave, the wave collides with the obstruction at a different point so that
η has a different shape. When α = −2.0 and τ > τ0 , symmetric steady-state
solutions are obtained for λ ≥ −2.8284 as in Figure 2. Let us denote the
lower bound of λ by λs. For example, λs = −2.8284 when α = −2.0 . Then,
λ ≥ λs can be partitioned depending on the number of symmetric solutions.
We found four symmetric steady state solutions on λs ≤ λ < −2.69 and two
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Figure 2: The relation graph between η(0) and λ for α = −2.0 , T = 3 ,
ρ = 0.25 and h = 0.5 .
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Figure 3: Four solutions when λ = −2.82 for α = −2.0 , T = 3 , ρ = 0.25
and h = 0.5 .
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Figure 4: The relation graph between η(0) and λ for different α values with
T = 3 , ρ = 0.25 and h = 0.5 .

solutions on −2.69 ≤ λ , respectively, when α = −2.0 . Figure 3 shows the
cases when λ = −2.82 .

The partition of λs ≤ λ with respect to the number of symmetric solutions
in Figure 2 changes as the amplitude of the initial wave |α| varies. As in
Figure 4, as |α| decreases, |η(0)| correspondingly decreases and the range
of λ for symmetric solutions also decreases.

The following lower bound λp of λ can be derived,

λp = −α2/(2
√

h(1− ρ)/(ρ + h)) .

Thus periodic solutions ahead of the bump satisfying zero mean depth are
obtained for λp ≤ λ . Since we consider symmetric solutions that are periodic
ahead of the bump, λp ≤ λs . When α is small, the discrepancy, λs − λp ,
is negligible. But, as α increases, the discrepancy increases. For example,
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for α = −2.0 , λp = −2.828427124 and λs = −2.8284 but for α = −0.1 ,
λp = −0.00707107 and λs = 7.11 . We anticipate that no symmetric solutions
exist for λp ≤ λ < λs .

3.2 τ < τ0

When τ < τ0 , the Equation (10) is considered with a1 < 0 and a3 < 0 .
Due to different signs of the coefficients, the range of λ for periodic solutions
ahead of the bump is

λ < λp = − α2√
h(1− ρ)/(ρ + h)

.

Since λp < 0 , we need to consider only subcritical case, λ < 0 . We obtained

two types of solutions ahead of the bump. Let ξ0 = (a2 +
√

a2
2 − 2a1d)/a1 ,

ξ1 = (a2−
√

a2
2 − 2a1d)/a1 and d is the same as d in (11). When ξ0 > ξ1 > 0 ,

η(x) = ξ
1/2
1 sn(γ(x− x+), k) ,

where γ = (a1ξ0/2)1/2 and k2 = ξ1/ξ0 < 1 . This solution η(x) tends to 0 as
ξ1 → 0+ . When ξ0 > 0 > ξ1 ,

η(x) = ξ
1/2
0 cn(γ(x− x+), k) ,

where γ = (a1(ξ0 − ξ1)/2)1/2 and k2 = ξ0/(ξ0 − ξ1) < 1 . This solution η(x)

tends to (2a2/a1)
1/2 sech(a

1/2
2 x− φ), where φ is a phase shift determined by

initial values, as ξ1 → 0−.

Figure 5 shows the relation between η(0) and λ from symmetric solutions
when α = −0.1 and T = 10−3 (τ = 0.002 < τ0). There exist two separated
regions for symmetric solutions, −2.3903 ≤ λ ≤ −2.1484 and λ ≤ −3.4227 .
Periodic solutions ahead of the bump become asymmetric for −3.4227 <
λ < −2.3903 . When τ > τ0 , the amplitude of symmetric solutions does
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Figure 5: Relation graph between η(0) and λ for α = −0.1 , T = 10−3 ,
ρ = 0.25 and h = 0.5 .
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Figure 6: Two solutions when λ = −2.35 for α = −0.1 , T = 10−3 , ρ = 0.25
and h = 0.5 .
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Figure 7: The graphs of η(0) in λ for different α values when T = 10−3 ,
ρ = 0.25 and h = 0.5 .
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not vary much from the initial perturbation |α| regardless of λ (Figure 2).
On the other hand, when τ < τ0 , the symmetric waves have large variations
over obstructions (Figure 5). Figure 6 represents typical symmetric solutions
when λ = −2.35 .

Figure 7 shows the graphs of η(0) in λ for different α when τ < τ0 . When
α = −0.17 , the region of λ for symmetric solutions is connected. However,
when |α| is decreased to α = −0.14 , these regions becomes disconnected.
As α converges to 0, these disconnected regions of λ shrink to points, λ =
−2.26,−4.46,−9.13 , This result is consistent with the symmetric solutions
with crests in [2].

Let λs be the numerical upper bound of λ for symmetric solutions. Simi-
larly to τ > τ0 , it is claimed that solutions of fmkdv will not be symmetric
for λp ≥ λ > λs . Two types of asymmetric solutions seem to exist. One
will be an asymmetric but bounded solution, whereas the other will be an
unbounded asymmetric solution.

Acknowledgments This research was partially supported by Korea Uni-
versity and the mic, Korea, under the itrc support program supervised by
the iita.

References

[1] S. P. Shen, M. C. Shen, and S. M. Sun, A model equation for steady
surface waves over a bump. J. Eng. Math. 23 (1989) 315–323.
http://dx.doi.org/10.1007/BF00128905 C202

[2] J. W. Choi, S. M. Sun, and M. C. Shen, Steady capillary-gravity waves
on the interface of two-layer fluid over an obstruction-forced modified
K-dV equation. J. Eng. Math. 28 (1994) 193–210.
http://dx.doi.org/10.1007/BF00058436 C202, C206, C214

http://dx.doi.org/10.1007/BF00128905
http://dx.doi.org/10.1007/BF00058436


References C215

[3] J. W. Choi, S. M. Sun, and M. C. Shen, Internal capillary-gravity waves
of a two layer fluid with free surface over an obstruction-Forced Extened
K-dV Equation. Phys. Fluids. A 8 (1996) 397–404.
http://dx.doi.org/10.1063/1.868793 C202

[4] J. W. Choi, D. Ahn, C. H. Lim and S. Park, Symmetric surface waves
over a bump. J. Korean Math. Soc. 6 (2003) 1051–1060. URL C202,
C205

http://dx.doi.org/10.1063/1.868793
http://mathnet.kaist.ac.kr/API/?MIval=db_jour_detail_kms&con=981155&tex=0

	Introduction
	Derivation of the forced modified KdV equation
	Forced modified KdV equation
	>0
	<0

	References

