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Abstract

A discounted Steiner tree is a weighted Steiner tree in which the
costs of constructing the edges and values at the nodes are discounted
over time. Discounted Steiner points are located to maximise the sum
of the discounted cash flows, known as the net present value, and
an algorithm for doing this for a single Steiner point, known as the
discounted Steiner point algorithm, was previously established. An
application of this problem is underground mine planning. This article
proposes an algorithm to optimally locate two junction points, given a
surface portal and three ore resource points, for maximum net present
value, which includes the value of the ore bodies and the construction
costs. The discounted Steiner point algorithm is extended to locate two
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junction points where time delays may occur at a discounted Steiner
point before constructing the adjacent edges. The optimal locations of
the junction points are obtained for a range of discount rates. Numerical
trials show that this algorithm works well. A generalisation of the
algorithm to locate more discounted Steiner points is also discussed.
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1 Introduction

The Steiner problem seeks a shortest tree that connects every node in a given
network [1]. A layout is a configuration of terminal points and Steiner points
where the topology is specified but the locations of the Steiner points are
not [2]. Hwang et al. [2] developed algorithms to locate multiple Steiner
points which minimise the total length of a network. However, the problem
analysed here locates Steiner points to maximise the net present value (npv),
which is different from the problem discussed by Hwang et al. [2].

The npv is the value of future cash flows projected to the present time. Cash
flows due to construction costs and time delays are dependent on the length of
the edges in the network. We use a given discount rate to discount these cash



2 Problem formulation C255

flows. If the discount rate is zero, then the problem reduces to the classical
Steiner problem [3].

The npv depends on where the junctions are placed in the network. Sirinanda
et al. [3, 4] described an iterative approach for locating a single discounted
Steiner point. The Discounted Steiner Point Algorithm (dspa) discussed by
Sirinanda et al. [3] located a junction point to access most efficiently two ore
bodies from the surface, thus maximising the npv. Sirinanda et al. showed
that in the maximum npv network, the paths from the junction point to the
surface portal and the first resource point make equal angles with the path
from the junction point to the second resource point. The algorithm provides
higher npv compared with placing the junction point at the location where
the network has the minimum development length.

This article describes a way of locating two discounted Steiner points to
maximise the npv for an underground mine. The dspa is extended to
locate two discounted Steiner points in a given network layout. In Section 2,
we formulate and describe the optimisation problem. Section 3 introduces
the Extension of the Discounted Steiner Point Algorithm (edspa) which is
proposed for the scenario of a network with two junction points. Section 4
presents the numerical trials.

2 Problem formulation

Let p0 = (x0,y0, z0), p1 = (x1,y1, z1), p2 = (x2,y2, z2) and p3 = (x3,y3, z3)
be points in an underground mine, where p0 is a surface portal (or breakout
point from existing infrastructure), and p1, p2 and p3 are the drawpoints for
ore deposits with values V1, V2 and V3, respectively, as shown in Figure 1. We
assume that when determining these values, any time discounting arising from
the time taken to extract and process the ore has been applied. The objective
is to locate two discounted Steiner points (junction points) s1 = (xs1 ,ys1 , zs1)
and s2 = (xs2 ,ys2 , zs2) to maximise the npv.
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Figure 1: Locating two discounted Steiner points, s1 and s2.

Figure 2: Basic layouts for a network with two discounted Steiner points.

The decline links p0s1, s1p1, s1s2, s2p2 and s2p3 are constructed one at a
time. The order of the access construction process for the mine illustrated in
Figure 1 is p0s1 → s1p1 → s1s2 → s2p2 → s2p3. The order that the access
points on deposits pi (i = 0, 1, 2, 3) are accessed remain fixed throughout
this article. A discounted Steiner network with four given points has three
possible network layouts, as shown in Figure 2.

A new algorithm is needed to optimally locate two discounted Steiner points
for the three layouts in Figure 2. The new algorithm, edspa, uses dspa as
a subroutine. For all three layouts the procedure is the same, except the
parameters that are passed to dspa change. The order of reaching access
points p1, p2 and p3 changes according to the layout, causing time delays
in the construction of the corresponding decline links. Therefore, the dspa
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is modified to take account of these time delays. Such a network is a time
delayed discounted Steiner network. The objective function is formulated to
account for these time delays.

Consider a network with a point p0 where the network breaks out from
existing infrastructure, two draw points p1 and p2 where ore is extracted,
and a discounted Steiner point s. Before starting the process there is a time
delay of td1 . The resource (ore) at the point p1 is extracted before p2 and
there is a time delay td2 before reaching the point p2. Let l0, l1 and l2 denote
the lengths of the decline links p0s, sp1 and sp2, respectively. Let D be the
decline development rate. Then the total time to reach p1 is td1 + t0 + t1
and the total time to reach p2 is td1 + t0 + t1 + td2 + t2, where t0 = l0/D,
t1 = l1/D and t2 = l2/D . Let r = 1 + d where d is the discount rate. The
cash flow sum generated from the ore extraction is given by Sirinanda et
al. [3, Lemma 2] and simplifies to

npvdext = V1r
−td1r−(l0+l1)/D + V2r

−(td1+td2)r−(l0+l1+l2)/D.

Let the access construction costs Vc = CD/ log r where C is the development
cost rate. Sirinanda et al. [3, Lemma 1] calculated these costs and they
simplify to

npvdcon = Vcr
−td1 [1− r−(l0+l1)/D(1− r−td2 ) − r−td2r−(l0+l1+l2)/D] .

The total npv is the combination of cash flows generated from the ore
extraction and access construction costs. Hence,

npv = npvdext − npvdcon ,
= [V1 + Vc(1− r

−td2 )]r−td1r−(l0+l1)/D

+ (V2 + Vc)r
−(td1+td2)r−(l0+l1+l2)/D − Vcr

−td1 . (1)

The objective function (1) is rewritten as

npv = V̄1r
−(l0+l1)/D + (V̄2 + V̄c)r

−(l0+l1+l2)/D − V̄cr
td2 , (2)
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where V̄1 = [V1+Vc(1−r
−td2 )]r−td1 , V̄2 = V2r−(td1+td2) and V̄c = Vcr−(td1+td2) .

The objective function (2) is similar to the objective function analysed by
Sirinanda et al. [3] but with modified parameter values. The only differences
are the constants V1, V2 and Vc, but they do not affect the optimisation.
Therefore, the dspa described by Sirinanda et al. [3] is used to locate the
discounted Steiner point in a time delayed discounted Steiner network.

In some cases, before applying the dspa, the total value of the cash flows
generated from the ore production and access construction costs at one
discounted Steiner point needs to be calculated. This value is defined as the
aggregated value Vs. The aggregated value at a discounted Steiner point is
written in terms of the discounted values at the adjacent nodes in the network.
For the discounted Steiner point s connected to two vertices p2 and p3 with
values V2 and V3, respectively, the aggregated value is

Vs = V2r
−l2/D + V3r

−(l2+l3)/D −

∫ l2+l3
0

Cr−x/D dx

= V2r
−l2/D + (V3 + Vc)r

−(l2+l3)/D − Vc , (3)

where the distances l2 and l3 are the Euclidean distances from s to p2
and s to p3, respectively. The point p2 is accessed before p3.

3 Extension of the Discounted Steiner Point
Algorithm

In this section, the Extension of the Discounted Steiner Point Algorithm
(edspa) is proposed to locate two discounted Steiner points for Layout A
shown in Figure 2. Below we describe the npv for Layout A.

In Figure 3, for Layout A, the cash flow sum generated from the ore extraction
is

npvAext = V1r
−(t0+t12+t1) + V2r

−(t0+t12+t1+t2) + V3r
−(t0+t12+t1+t2+t3) . (4)
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Figure 3: The npv calculations for Layout A.

By substituting t0 = l0/D, t12 = l12/D, t1 = l1/D, t2 = l2/D, and t3 = l3/D
into equation (4),

npvAext = V1r
−(l0+l12+l1)/D + V2r

−(l0+l12+l1+l2)/D + V3r
−(l0+l12+l1+l2+l3)/D .

The decline links p0s1, s1s2, s2p1, s2p2 and s1p3 need to be constructed
sequentially. Sirinanda et al. [3, Lemma 1] calculated

npvAcon =

∫ l0
0

Cr−x/D dx+ r−l0/D
∫ l12
0

Cr−x/D dx+ r−(l0+l12)/D

∫ l1
0

Cr−x/D dx

+ r−(l0+l12+l1)/D

∫ l2
0

Cr−x/D dx+ r−(l0+l12+l1+l2)/D

∫ l3
0

Cr−x/D dx ,

npvAcon = Vc[1− r
−(l0+l12+l1+l2+l3)/D] .

Since the construction is a cost, cash flows generated from access construction
have a negative value. The total npv is the combination of cash flows
generated from ore production and access construction costs. Hence,

npvA = npvAext − npvAcon

= V1r
−(l0+l12+l1)/D + V2r

−(l0+l12+l1+l2)/D

+ (V3 + Vc)r
−(l0+l12+l1+l2+l3)/D − Vc . (5)

We now describe an algorithm for optimally locating two discounted Steiner
points.



3 Extension of the Discounted Steiner Point Algorithm C260

Figure 4: Step 1 for Layout A.

In the algorithm, p0 = (x0,y0, z0), p1 = (x1,y1, z1) and p2 = (x2,y2, z2) are
the surface portal (or breakout point from existing infrastructure) and the
access points for ore deposits with values V̄1 and V̄2, respectively, where
V̄1 and V̄2 are as in equation (2). The notation dspa(p0,p1,p2, V̄1, V̄2), or
similar, is used when the dspa is called from within the current algorithm.
In the first iteration of the dspa, the discounted Steiner point is initialised at
the classical Steiner point.

A superscript i denotes the value of the variable at the ith iteration. The
initialisation step and Steps 1 and 2 for the first iteration of the algorithm
are described below.

Initialisation For Layout A in Figure 3, the first discounted Steiner point s1
is initialised at the mid point of the line p0p3 and named s01, the second
discounted Steiner point s2 is initialised at the mid point of the line p1p2 and
named s02, and the initial npv, npv(0), is determined.

Step 1: iteration (i = 1) Calculate the distance (see Figure 3)

l10 =
√

(x0s1 − x0)
2 + (y0s1 − y0)

2 + (z0s1 − z0)
2 .

Before reaching the point s01 there is a time delay td1 in the network where
td1 = l

1
0/D . The path from s12 to p2 is constructed immediately after reach-
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Figure 5: Step 2 for Layout A.

ing p1, so no time delay is applied for reaching p2 and therefore td2 =
0. It follows from equation (2) that this step is written compactly as
dspa(s1,p1,p2,V1r−l

1
0/D,V2r−l

1
0/D).

Step 2: iteration (i = 1) Use the dspa to determine the new location
of the first discounted Steiner point. The distances l11 and l12 were found in
Step 1. From equation (3), the aggregated value at the point s2 is

V1s = V1r
−l11/D + (V2 + Vc)r

−(l11+l
1
2)/D − Vc .

There is no initial delay in the network so td1 = 0 . However, the decline
link s11p3 is constructed after reaching the points p1 and p2. Therefore a time
delay td2 = (l11 + l

1
2)/D is required. According to equation (2), this step is

dspa(p0, s12,p3,V1s + Vc[1− r−(l11+l
1
2)/D],V3r−(l11+l

1
2)/D).

The Steps 1 and 2 are repeated until |npv(i) − npv(i− 1)| < ε , that is, the
difference in the npv at the ith and the (i − 1)th iteration is smaller than
some specified number ε. This npv is calculated using equation (5).

The steps described above are shown in Algorithm 1. The edspa is used to
locate two discounted Steiner points for Layout A.

For other layouts the algorithm procedure is the same as Algorithm 1. However,
in Steps 1 and 2, the dspa is applied to different sets of three points and
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Algorithm 1: Extension of the Discounted Steiner Point Algorithm
Input: V1, V2, V3, discount rate, development and cost rate of the

declines, and locations of p0, p1, p2, p3 and ε.
Output: Optimal locations of two discounted Steiner points and the

maximum npv.
1 Initialisation: s01 at the mid point of p0 and p3, s02 at the mid point of
p1 and p2, npv(0).

2 i = 1
3 repeat
4 Step 1
5 Calculate:

li0 =
√
(xi−1s1

− x0)2 + (yi−1s1
− y0)2 + (zi−1s1

− z0)2

Locate si2 by applying the dspa(si−11 ,p1,p2,V1r−l
i
0/D,V2r−l

i
0/D).

6 Step 2
7 Update the aggregated value:

V is = V1r
−li1/D + (V2 + Vc)r

−(li1+l
i
2)/D − Vc

Locate si1 by applying
dspa(p0, si2,p3,V is + Vc(1− r−(li1+l

i
2)/D),V3r−(li1+l

i
2)/D).

8 Calculate npv(i) using equation (5).
9 i = i+ 1

10 until |npv(i) − npv(i− 1)| < ε
11 Outputs are the optimal locations of the discounted Steiner points
s∗2 = s

i
2, s∗1 = si1 and npv∗ = npv(i)
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their corresponding values V are different.

4 Numerical trials

In our numerical trials we use parameter values

• V1 = $60M, V2 = $20M, V3 = $5M, C = $6000m−1, D = 3640m/yr;

• p0 = (0, 1000, 0) , p1 = (1000, 0, 0) , p2 = (1000, 750, 0) , p3 = (0, 0, 0)
in metres;

• and discount rates d = 0, 5, 10,∞ , measured in %/yr.

The edspa is applied to Layout A (Figure 3) and the optimal locations of the
two discounted Steiner points are obtained for a range of discount rates. As
shown in Figure 6, for higher discount rates, p1 and p2 are accessed sooner
while the distances from the discounted Steiner point s2 to points p1 and p2
increase. Table 1 shows the improvement of the npv compared with the
network where the two Steiner points are located at the classical Steiner
locations. The discounted Steiner point algorithm gives an improvement
for all finite discount rates and greater improvements as the discount rate
increases.

For the same set of inputs, Layout B is infeasible and Layout C produces
solutions with slightly lower values for the npv.

5 Conclusion

The discounted Steiner point algorithm is extended to locate two discounted
Steiner points. The extension of the discounted Steiner point algorithm is
applied to a hypothetical mine data-set and the performance is evaluated.
The algorithm provides higher npv compared with the placement of the
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Table 1: Improvement of the npv for different discount rates. The npv is
measured in $M and the improvement is measured in $k.
Discount Optimal location of the npv with npv without Improve-
(%/yr) points s1, s2 edspa edspa ment

0 (286, 443, 0), (786, 418, 0) 69.888 69.888 0
5 (317, 481, 0), (769, 415, 0) 68.209 68.177 32
10 (338, 503, 0), (757, 414, 0) 66.683 66.584 99∞ (500, 500, 0), (625, 375, 0) 0.000 0.000 0

Figure 6: The optimal locations of the discounted Steiner points.
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discounted Steiner points at the classical positions. The numerical trials
suggest that the edspa converges rapidly. However, the convergence is hard
to show mathematically. We plan to consider this in future work.

For any given set of four input points, at most two of the three layouts
(Figure 2) are feasible. If there are two feasible layouts, then the locations of
the discounted Steiner points are substantially different in the two layouts,
but based on the limited numerical trials performed so far, it appears that
there is typically only a small difference in the npv.

In the method described here, the iterations alternate between the two Steiner
points. In principle, the method could be extended to networks with three
or more Steiner points (i.e., four or more draw points) by iterating cyclically
through all of the Steiner points. If the method were to be extended in
this way, then it could potentially be used to optimise the layout of mines
with four or more draw points by applying the method to each possible
layout (topology). However, there are two issues that make this process
more complicated. One issue is the rapid (superexponential) increase in the
number of layouts that need to be considered as the number of Steiner points
increases. The other issue is that for any given topology, various orders of
cycling through the Steiner points are possible, and it is unclear what effect
the choice of order has on the convergence of the process. These issues are
matters for further research.
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