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On approximate closed form solutions of linear
ordinary differential equations
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Abstract

Approximate closed form solutions of a linear ordinary differential
equation are obtained using piecewise approximations of the arbitrary
coefficient function. We show how to obtain expressions for the gen-
eral solution and the eigenvalue equation. An example is given with
specific boundary conditions typical of a range of problems in mathe-
matical physics and engineering. The method is robust and accurate
and can be used as a complement to standard numerical techniques.
The function representing the approximate solution has a simple form
and can be used like a standard function in calculations that require
the solution of the differential equation.
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1 Introduction

There are situations when it is desirable to have closed form solutions of
an ordinary differential equation (ode) even if such solutions are only ap-
proximate. Eigenvalue problems are a typical example. In this case the ode
depends on an eigenvalue λ and the solution may only exist for specific values
of λ. It is desirable to have an analytic expression from which to calculate
the eigenvalues.

There are other cases when the solution is required in subsequent calcu-
lations. The ode may be the result of the application of Fourier or Laplace
transforms to a linear partial differential equation. In this case the coeffi-
cients will be functions of the transform variable and it is convenient to have
a closed form expression in order to attempt an inversion of the transform.

In this article we study the linear differential equation

d2ψ

dx2
+ f(x;λ)ψ = 0 , (1)
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and show how to obtain approximate closed form solutions by approximat-
ing f(x;λ) by a piecewise function. We introduce a partition of the domainD
where the equation is defined and choose local approximating functions so
the resulting odes have closed form solutions.

As early as 1912, Rayleigh [1] used a similar approach in the solution of
the wave equation by the layer method. Chernyak [2] used the method to
solve a problem concerning the scattering of a particle by two close potentials
in quantum mechanics and more recently, Kalotas and Lee [3] used piecewise
constant coefficients to study the scattering of a particle by an arbitrary one-
dimensional potential barrier. With the advent of computer algebra systems
it is now feasible to extend the procedure in a systematic way to obtain
approximate closed form solutions of a number of linear problems.

In Section 2 we formulate the problem in terms of a general function f(x;λ)
and identify the form of the approximate solution. In Section 3 we calculate
the general solution in terms of two arbitrary constants and express it in a
simple form that can be used like a standard function.

In Section 4 we give an example that illustrates the potential applications
of the method. The problem deals with the time independent Schrödinger’s
equation in an infinite domain. Finally, in Section 5 we summarize the main
conclusions, identify possible extensions and discuss a few issues that are
important for the successful computer implementation of the method.

2 Problem formulation

We wish to find approximate solutions of equation (1) in a domain D which
we assume to be infinite. We divide the problem formulation into four steps:

1. Introduce a partition of D consisting of N + 1 points x1, x2, . . . , xN+1
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and consider the N + 2 disjoint intervals

In =[xn, xn+1] , n = 1, 2, . . . , N ,

I0 =(−∞, x1] , IN+1 = [xN+1,∞) .

2. Select a sequence of continuous functions {fn(x;λ)}, n = 0, 1, . . . , N +
1 , that are local approximations to the coefficient function f(x;λ) on
the interval In. Construct the restriction f̂n of fn:

f̂n(x;λ) = fn(x;λ)χn , n = 0, 1, . . . , N + 1 , (2)

where

χn =

{
1 , if x ∈ In,
0 , otherwise,

is the characteristic function of the interval In. Then the function

fN(x;λ) =
N+1∑
n=0

f̂n(x;λ) , (3)

is a piecewise approximation of f(x;λ) in the domain D. In general,
fN(x;λ) will be a piecewise continuous function with possibly a finite
number of finite discontinuities at the partition points {xn}. In the
example in Section 4 we use interpolating linear functions through the
points [xn, f(xn;λ)] and therefore fN will be continuous with a piece-
wise continuous derivative on D.

3. Construct the sequence of local differential operators

L̂n ≡
d2

dx2
+ f̂n(x;λ) , n = 0, 1, . . . , N + 1 .

For each n the local operators have an associated local equation

L̂nψ̂n = 0 , n = 0, 1, . . . , N + 1 , (4)

with solution ψ̂n(x;λ) = ψn(x;λ)χn valid on In. I emphasize that the
sequence {fn(x;λ)} must be chosen so that the local equation (4) has
known closed form solutions.
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4. Finally, let the global function consist of the sum of the local solutions

ψN(x;λ) =
N+1∑
n=0

ψ̂n(x;λ) (5)

on the original domainD. It is now easy to prove the following theorem.

Theorem 1 The global function ψN(x;λ) is an exact solution of the equation
LNψN = 0 where the global operator

LN ≡
d2

dx2
+ fN(x;λ) on D ,

and fN(x;λ) is given in (3).

The proof, which is omitted, uses the linearity of LN and the orthogonality
of χn with respect to real multiplication on the given domain D. This result
gives a formula to construct the approximate solution ψN once f(x;λ) is
approximated by fN(x;λ).

3 The general solution

According to Theorem 1, to find the approximate solution of (1) we must
consider the general solution of the local equation (4) valid on Ij:

ψ̂j(x;λ) =
[
ajαj(x;λ) + bjβj(x;λ)

]
χj , j = 0, 1, . . . , N + 1 , (6)

where αj(x;λ) and βj(x;λ) are two linearly independent solutions, and where
aj and bj are two arbitrary constants.

We require continuity of ψ and its derivative at each partition point x =
xj , that is

ψ̂j−1(xj;λ) =ψ̂j(xj;λ) ,
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ψ̂′
j−1(xj;λ) =ψ̂′

j(xj;λ) , j = 1, 2, . . . , N + 1 , (7)

where the prime indicates differentiation with respect to x. Substituting (6)
into (7) and solving for aj−1 and bj−1 in terms of aj and bj we get

aj−1 = Mjaj , j = 1, 2, . . . , N + 1 . (8)

The vector aj and the matrix Mj are

aj =

[
aj

bj

]
, Mj =

[
M

(j)
11 M

(j)
12

M
(j)
21 M

(j)
22

]
,

where

M
(j)
11 =

1

∆j

W (αj, βj−1) , M
(j)
12 =

1

∆j

W (βj, βj−1) ,

M
(j)
21 =

1

∆j

W (αj−1, αj) , M
(j)
22 =

1

∆j

W (αj−1, βj) , (9)

∆j = W (αj−1, βj−1) ,

and where W (f, g) = fg′ − f ′g is the Wronskian of f and g. Note that
∆j 6= 0 since αj−1 and βj−1 are two linearly independent functions. All of
the above expressions are evaluated at the partition points x = xj and are
valid for j = 1, 2, . . . , N + 1 .

Expanding the system (8) it may be shown that the coefficient vectors aj

may be expressed in terms of the vector aN+1:

aj = Pj+1aN+1 , Pj+1 =
N+1∏

k=j+1

Mk , j = 0, 1, . . . , N . (10)

Then the matrix Pj satisfies the recurrence relation

Pj−1 =Mj−1Pj , j = 2, 3, . . . , N + 1 ,
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PN+1 =MN+1 . (11)

This recurrence relation is very important for the actual implementation of
the method and allows the efficient computation of all the coefficients in (10).
Substituting aj into (6) and then substituting the result into (5) gives the
approximate general solution

ψN(x;λ) =
N+1∑
j=0

[
ajαj(x;λ) + bjβj(x;λ)

]
χj , (12)

in terms of the arbitrary vector

aN+1 =

[
aN+1

bN+1

]
. (13)

Remark I emphasize that the summation in (12) is a disjoint sum and that
once the value of x is specified we only have to identify the corresponding
interval Ij where x belongs and compute only that term in the sum to get the
value of the solution at that point. All other terms will be zero by definition
of χj.

This means that we can rewrite (12) using a single term as described in
the following proposition.

Proposition 2 If the solutions αj(x;λ) and βj(x;λ) of the local equation (4)
are obtained from partitioning single functions A(x;λ) and B(x;λ), respec-
tively, then the solution (12) can be written in the simpler form

ψN(x;λ) = âA(x;λ) + b̂B(x;λ) , (14)

where

(â, b̂) =
N+1∑
j=0

(aj, bj)χj

are piecewise constant functions of x.
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We see an example of how this is done in equation (21) in the next section.

4 Infinite domain example

We now consider the coefficient function

f(x;λ) = λ+ U0 sech2 x . (15)

In this case equation (1) becomes the time independent Schrödinger’s equa-
tion with potential u(x) = −U0 sech2 x where U0 is a constant. The boundary
conditions to be satisfied are that the solution is finite as x → ±∞ . This
is the classic quantum mechanics problem of a particle bound by the poten-
tial u(x).

This equation has an exact solution (see Landau and Lifshitz [4] for ex-
ample) that will be used to check the calculations and compare with the
approximate expression. Because the domain D is infinite there are only a

finite number K of eigenvalues, K =
[(
U0 + 1/4

)1/2 − 1/2
]

+ 1 , where the
square bracket [. . . ] indicates the integer part and the +1 is omitted when(
U0 + 1

4

)1/2 − 1
2

is an integer. Letting λ = −ν2 , the exact eigenvalues are

νk =
(
U0 + 1/4

)1/2 − (k + 1/2) , k = 0, 1, . . . , K − 1 . (16)

When U0 = 6 , Equation (16) predicts the two exact eigenvalues ν0 = 2 ,
ν1 = 1 . The corresponding exact eigenfunctions are

φ0 = c0 sech2 x ,

φ1 = c1 tanh x sech x , (17)

where c0 and c1 are normalization constants.

In order to calculate the approximate solution we use approximating func-
tions (2) given by straight line segments,

fn(x;λ) = mn(λ)x+ cn(λ) ,
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Table 1: Two exact eigenvalues and the two corresponding approximate
eigenvalues calculated numerically from equation (20) for U0 = 6 and N+1 =
7 partition points. The average relative error is 2.3%.

k νk Exact ν̂k Approximate Relative error
0 ν0 = 2 ν̂0 = 1.926317 3.8%
1 ν1 = 1 ν̂1 = 1.007832 0.8%

joining the points [xn, f(xn;λ)] for n = 1, 2, . . . , N + 1 . Then if mn 6= 0 the
local equations (4) have solutions in terms of Airy functions (Abramowitz
and Stegun [5]) of the form

ψn(x;λ) = an Ai(ξn) + bn Bi(ξn) , (18)

ξn(λ) = −mn(λ)−2/3
[
mn(λ)x+ cn(λ) + λ

]
.

If mn = 0 the solutions are given by exponential or trigonometric functions.
For example, in the semi-infinite intervals I0 and IN+1 the potential func-
tion u(x) in (15) decays sufficiently fast at infinity so that

f(x;λ) ∼ λ as x→ ±∞ .

In this case, the local eigenfunctions on I0 and IN+1 are

ψ0(x;λ) = a0 exp(−νx) + b0 exp(νx) ,

ψN+1(x;λ) = aN+1 exp(−νx) + bN+1 exp(νx) ,

where λ = −ν2 < 0 . For a finite solution as x → ±∞ we require both
a0 and bN+1 to be zero. We set bN+1 = 0 because, from (13), it is one of the
arbitrary constants. However, in order to make a0 = 0 as well, we have to
consider the relationship between the coefficient vectors a0 and aN+1 which
is given by (10) with j = 0 , namely a0 = P1aN+1 , or in component form,[

a0

b0

]
=

[
P

(1)
11 P

(1)
12

P
(1)
21 P

(1)
22

] [
aN+1

bN+1

]
. (19)
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Substituting bN+1 = 0 into (19) gives a0 = P
(1)
11 aN+1 and b0 = P

(1)
21 aN+1 .

Therefore, for non-trivial solutions we require

P
(1)
11 (λ) = 0 . (20)

This is the eigenvalue equation whose solution gives the discrete set of eigen-
values λn, n = 1, 2, . . . , K . I point out that because the local solutions (6)
depend on λ, the matrices Mj and Pj will also depend on λ. This means that
the eigenvalue equation can be quite complicated and in most cases can only
be solved numerically.

Figure 1 shows plots of the left hand side of (20) as a function of ν for
three values of the potential amplitude, U0 = 1, 4, 6 , usingN+1 = 7 partition
points. The solid curve corresponds to U0 = 6 and shows three intersections
with the ν-axis at ν̂0 ≈ 1.926 , ν̂1 ≈ 1.008 and ν̂2 ≈ 0.209 . The first two are
shown in Table 1 together with the two exact solutions predicted by (16).

Our approximate solution also has a third eigenvalue ν̂2 ≈ 0.209 . Equa-
tion (16), with νk = 0.2 and U0 = 6 , gives k ≈ 2 which corresponds to
the third eigenfunction. This is not surprising since we are only using an
approximation to the coefficient function (15). However, we found that as
N increases, and therefore fN(x;λ) → f(x;λ), the third eigenvalue ν̂2 → 0
as expected. When ν = 1 the exact eigenvalue equation (16) can be solved
for U0 to give U0 = (k + 3/2)2 − 1/4 . For k = 0, 1, 2, 3, . . . this equation
gives values of U0 = 2, 6, 12, 20, . . . . This behaviour is also exhibited by the
approximate solution and can be observed in Figure 2 which plots the eigen-
value equation as a function of the potential amplitude U0 for ν = 1, 2, 3 .
The solid curve, which represents the eigenvalue ν = 1 , intersects the hor-
izontal axis at values of U0 ≈ 2, 6, 11, 18, . . . , in close agreement with the
exact solution. Also note that for ν = 2 , U0 ≈ 6 , as in Table 1.

The approximate closed form eigenfunction (14) corresponding to λ ≡
λ1 = −ν̂2

1 can be written as

ψN(x;λ1) = âAi(σ̂x+ τ̂) + b̂Bi(σ̂x+ τ̂) + ĉ exp(ρ̂x) , (21)
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Figure 1: Left-hand Side of the eigenvalue equation (20) as a function of ν
for three values of the potential amplitude: U0 = 6 (solid), U0 = 4 (dashed),
U0 = 1 (dotted).
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Figure 2: Left-hand Side of the eigenvalue equation (20) as a function of the
potential amplitude U0 for three values of ν: ν = 1 (solid), ν = 2 (dashed),
ν = 3 (dotted). Note the intersections of the solid curve with the U0-axis at
U0 ≈ 2, 6, 11, 18 .
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where Ai(z) and Bi(z) are the Airy functions introduced in equation (18),

(â, b̂, σ̂, τ̂) =
6∑

j=1

(aj, bj, σj, τj)χj ,

ĉ = b0χ0 + b7χ7, ρ̂ = σ0χ0 + σ7χ7 ,

and where

a0 = 0 , b0 = −1 ,
a1 = −a6 = −0.438355× 103 , b1 = −b6 = −0.778714× 10−7 ,
a2 = −a5 = −0.397119 , b2 = −b5 = −0.539939× 10−2 ,
a3 = −a4 = −0.360504 , b3 = −b4 = −0.760902× 10−1 ,
a7 = 1 , b7 = 0 ,
σ0 = −σ7 = 1.007832 ,
σ1 = −σ6 = −0.430951 , τ1 = τ6 = 3.702027 ,
σ2 = −σ5 = −1.002459 , τ2 = τ5 = −1.776677 ,
σ3 = −σ4 = −1.504657 , τ3 = τ4 = −2.201542 ,
x1 = −x7 = −4 ,
x2 = −x6 = −8/3 ,
x3 = −x5 = −4/3 ,
x4 = 0 ,

where we recall that N + 1 = 7 partition points and that a0 = b7 = 0 from
the boundary conditions. Figure 3 shows plots of ψN(x;λ1) and the exact
eigenfunction φ1(x) in (17) as a function of x. The approximate solution is
calculated at ν = ν̂1 from Table 1. Both functions are normalized to unity
at their maximum values.

We found that the L2 norm of the difference between the two functions
was of the order of 0.1 in all calculations usingN+1 = 7 partition points. The
norm was also found to decrease as the number of partition points increased
indicating that ‖ψN − φ1‖ → 0 as N →∞ .
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Figure 3: the exact (solid) and approximate (dashed) eigenfunctions cor-
responding to ν = ν̂1 ≈ ν1 as a function of x for U0 = 6 calculated from
equations (17) and (21), respectively. The eigenfunctions are normalized to
unity at their maximum values.
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5 Conclusions

We have shown that using a piecewise approximation of the function f(x;λ)
it is possible to obtain approximate closed form solutions of the differential
equation

d2ψ

dx2
+ f(x;λ)ψ = 0 .

We looked at an example in an infinite domain that has an exact solution
and was compared with the approximate expression. We then showed how
to obtain an analytic expression for the eigenvalue equation. However, the
eigenvalue equation has a complicated dependence on λ and in general it has
to be solved numerically to obtain the eigenvalues.

The method can be extended in several ways. Firstly, it can be applied
to two point boundary value problems in a finite domain [a, b]. Similar ex-
pressions to (20) can be obtained for the eigenvalue equation in this case.
Secondly, the matrix formulation of Section 3 can be extended to include
non-homogeneous equations with more than one coefficient function such as

d2ψ

dx2
+ f(x)

dψ

dx
+ g(x)ψ = h(x) .

Thirdly, other sequences of functions {f̂n} given in (2) may be used to in-
crease the accuracy of the method for a given partition size. The main crite-
rion is that the local equations (4) must have known closed form solutions.
For example, if {f̂n} are quadratic functions then the approximate solution
can be expressed in terms of hypergeometric functions.

Finally, the successful software implementation of the method using a
computer algebra system requires that we use a top-down approach when-
ever possible. For example, calculation of the matrix products in (10) should
be carried out with dummy symbols for the eigenfunctions. The actual ex-
pressions such as the Airy functions, should be substituted at the end after
all matrix multiplications have been carried out.
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