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Abstract

Stochastic volatility models are of fundamental importance to the
pricing of derivatives. One of the most commonly used models of
stochastic volatility is the Heston model in which the price and volatility
of an asset evolve as a pair of coupled stochastic differential equations.
The computation of asset prices and volatilities involves the simulation
of many sample trajectories with conditioning. The problem is treated
using the method of particle filtering. While the simulation of a
shower of particles is computationally expensive, each particle behaves
independently making such simulations ideal for massively parallel
heterogeneous computing platforms. We present a portable Opencl
implementation of the Heston model and discuss its performance and
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efficiency characteristics on a range of architectures including Intel
cpus, Nvidia gpus, and Intel Many-Integrated-Core accelerators.
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1 Introduction

Stochastic volatility models are fundamental tools in the pricing of derivative
contracts such as European options. However, the difficulty is that these mod-
els rarely have closed-form transitional density functions, and consequently
their practical application is normally a computationally intensive task [1, 5].
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Hurn et al. [5] recently proposed that graphics processing units (gpus) be
used to improve the performance of parameter estimation for financial models
using index data, including options written on that index. We propose a
more general heterogeneous computing solution which exploits parallelism
in many different hardware architectures. The Nelder–Mead algorithm [9] is
used within a maximum likelihood framework to estimate the parameters of
the Heston stochastic volatility model [4] from index and option data on the
S&P 500 index between 1st January, 1990 and 30th June, 2012.

The primary contribution of this work is the computational analysis of the
particle filtering method used by Hurn et al. [5, 6] in a general heterogeneous
computing context. Our findings suggest that the difference in performance
benefit from gpus over other architectures may not be sufficiently significant
to warrant development of codes that solely target gpus.

1.1 The Heston model

Given independent Wiener processes W1(t) and W2(t), the Heston stochastic
volatility model with respect to the physical measure is given by the stochastic
differential equations (sdes),

dS

S
= (r− q− ξSV)dt+

√
V
(√

1− ρ2 dW1 + ρdW2

)
, (1)

dV = κP (γP − V)dt+ σ
√
V dW2 , (2)

where S(t) and V(t) are the index and volatility processes respectively, r is
the risk-free rate of interest, q is the dividend-price ratio, ξS is the equity
premium, γP is the long-time mean volatility, κP is the rate at which V(t)
reverts to γP, σ is the volatility of volatility, and ρ is the correlation between
returns and volatility. The role of the equity premium in the physical model
(equations (1) and (2)) is to compensate a risk adverse investor for exposure
to equity risk.
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Options are priced under the risk neutral measure

dS

S
= (r− q)dt+

√
V
(√

1− ρ2 dW1 + ρdW2

)
, (3)

dV = κQ (γQ − V)dt+ σ
√
V dW2 , (4)

where κQ and γQ are related to the parameters of the physical model (equations
(1) and (2)) by the formulae κQ = κP + λσ

2 and γQ = κPγP/κQ . The task is
to estimate the values of the parameters θ = {ρ, κP, ξS,σ, κQ,γQ} from index
and option data on the S&P 500, a task that necessarily involves both the
physical (1)–(2) and risk neutral model (3)–(4).

2 Parameter estimation

Consider a system observed at discrete time points t0, t1, . . . , tT , with Xi the
observation at time ti and T is the number of observation times (excluding
the initial condition). Given a likelihood function L(θ;X0, . . . ,XT), classical
parameter estimation computes the maximum likelihood estimator (mle) for
the parameter set θ responsible for the observations:

θmle = argmax
θ

l̂ (θ;X0, . . . ,XT) , (5)

where
l̂ (θ;X0, . . . ,XT) =

1

T
logL (θ;X0, . . . ,XT) . (6)

In the case of the stochastic volatility model (equations (1)–(4)) the observa-
tions have the form Xi =

(
Si,Vi,H

(1)
i , . . . ,H(M)

i

)
, where Si, Vi, H

(j)
i and M

are respectively the index, volatility, the price of the jth option on the index
at time ti, and the number of options available on the index. The average



2 Parameter estimation C368

log-likelihood for this problem is

l̂ (θ;X0, . . . ,XT) =
1

T

[
M∑
j=1

log g
(
H

(j)
0 | H̃

(j)
0 ; θ

)

+

T∑
i=1

(
log fP (Xi, ti − ti−1 | Xi−1; θ) +

M∑
j=1

log g
(
H

(j)
i | H̃

(j)
i ; θ

))]
, (7)

where fP is the transitional density function for the physical model (1)–(2),
H̃

(j)
i is the predicted option price under the risk neutral model (3)–(4) for

the jth option at time ti, and g is a known distribution of option pricing
errors [2, 5].

The evaluation of expression (7) presents two challenges. First, it contains
volatility which is an unobservable variable, and second, the evaluation of g
requires the calculation of many model option prices under the risk-neutral
measure.

2.1 Recursive filtering

Volatility is a latent variable of the problem, nevertheless information about
unobserved volatility is inferred from historical observations Zi = {Xk}

k=i
k=0 .

The calculation of total likelihood (equation (7)) proceeds incrementally as
the state and volatility are advanced from time ti−1 to ti using recursive
particle filtering [5, 7].

Assume that f (Vi−1 | Zi−1) is a known filtered probability density func-
tion (pdf) for volatility given historical data up to ti−1. Bayes’ Theorem
provides the equivalent pdf for ti, namely

f (Vi | Zi) =
f (Xi,Vi | Zi−1)
f (Xi | Zi−1)

. (8)
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The right hand side of equation (8) is evaluated using the integrals

f (Xi,Vi | Zi−1) =
∫
V

f (Xi | Vi,Vi−1) f (Vi | Vi−1) f (Vi−1 | Zi−1)dVi−1 , (9)

f (Xi | Zi−1) =

∫
V

f (Xi,Vi | Zi−1)dVi , (10)

where V is the state space of volatility. The integrals in equations (9) and (10)
are evaluated numerically using Monte Carlo methods. The most com-
putationally intensive component of this process is the evaluation of the
function f (Xi | Vi,Vi−1) in equation (9) as it requires the evaluation of option
prices conditioned on Vi at ti.

2.2 Computation of option prices

Given a call option with strike price K, maturity T and index spot price S0,
the expected payoff is

H̃ =

∫∞
K

(S− K)

∫∞
−∞ fQ (S0,V , T , | S, v; θ)dSdv . (11)

Here fQ is the transitional density function for the risk neutral measure. For
brevity, we restrict our attention to the pricing of a call option, but the price
of a put option is calculated in a similar way.

The crucial idea is that the characteristic function of the risk neutral model
(equations (3) and (4)) is computed in semi-closed form. The integral con-
tained within the payoff function is then approximated accurately from this
semi-closed expression.

The calculation for the Heston model proceeds as follows. Let Y = log S/S0
and substitute into equation (3) using Itō’s Lemma to obtain

dY =

(
r− q−

V

2

)
dt+

√
V
(√

1− ρ2 dW1 + ρdW2

)
. (12)
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The expected payoff for the call option in terms of Y is

H̃ = S0

∫∞
log ξ

(ey − ξ)

∫∞
−∞ fQ (0,V , T , | y, v; θ)dydv , (13)

where ξ = K/S0 .

The backward Kolmogorov equation describing the evolution of the transitional
density function of Heston’s risk neutral model with respect to the initial
state satisfies the partial differential equation

∂fQ

∂t
= −

(
r− q−

V

2

)
∂fQ

∂Y
− κQ (γQ − V)

∂fQ

∂V

−
V

2

[
∂2fQ

∂Y2
+ 2ρ

∂2fQ

∂Y∂V
+ σ2

∂2fQ

∂V2

]
. (14)

The Fourier transform of equation (14) is now taken to obtain an equation
satisfied by the characteristic function of fQ, namely

FQ (Y,V , t,ωy,ωv; θ) =

∫∫
R2

fQ (Y,V , t | y, v; θ) ei(ωyy+ωvv) dydv , (15)

which is a function of frequencies ωy and ωv. The equation satisfied by
expression (15) is then observed to have a semi-closed form solution given by
the anzatz

FQ (Y,V , t,ωy,ωv) = e
B0(τ,ωy,ωv)+B1(τ,ωy,ωv)Y+B2(τ,ωy,ωv)V , (16)

with τ = T − t , and in which the functions B0, B1 and B2 satisfy a set of
ordinary differential equations (odes) that must be solved numerically. These
odes are obtained via the Fourier transform of equation (14); Hurn et al. [5]
described details.

Typically fQ is well approximated by a function of compact support over
y ∈ [−β,β] for sufficiently large values of β. In this case the integral of fQ
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with respect to v is represented with high accuracy by the Fourier series [6],∫∞
−∞ fQ (Y,V , T | y, v; θ)dv =

∞∑
k=−∞ cke

−kπiy/β,

with coefficients determined from the solution of equation (16), namely

ck ≈
1

2β
FQ (Y,V , T ,ωk, 0; θ) , ωk =

kπ

β
.

This Fourier series approximation method is applicable to a wider class of
options pricing models beyond the Heston model. Hurn et al. [6] provided
more detailed discussion and analysis.

The successful implementation of the above steps allows the calculation of
expression (13) that, in turn, completes the Monte Carlo integration for
equation (9).

Algorithm 1 details the evaluation of the log-likelihood function (equation (7)).
The constants Nt, Nb, Np, Ns, and Nf are, respectively, the number of
observations, burn-in simulations, particles, Heston simulations and Fourier
frequencies.

3 Heterogeneous computing implementation

In this section we develop the main components of a portable heterogeneous
implementation to the mle developed in Section 2. The Open Computing
Language (Opencl) programming architecture is presented along with the
advantages which make it a viable alternative to vendor specific languages
such as the cuda C language provided by Nvidia.
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Algorithm 1 Particle filter for log-likelihood function, l̂(θ;X0, . . . ,XT) evalu-
ation.
1: Input θ = {ρ, κP, ξS,σ, κQ,γQ} and Xi = {Si,H

(1)
i , . . . ,H(M)

i } .
2: for k = 1, . . . ,Nf do
3: Compute FQ coefficients B0(τ,ωk, 0), B1(τ,ωk, 0) and B2(τ,ωk, 0).
4: end for
5: Initialise particles {wk0,Vk0 } using burn-in simulations.
6: for i = 1, 2, . . . ,Nt do
7: for k = 1, 2, . . . ,Np do
8: Simulate physical model forward to obtain Vki ∼ f(Vi | Vi−1) .
9: Compute option prices H̃(j)

i using Fourier series approximation.
10: wki ← log f

(
Si, H̃

(1)
i , . . . H̃(M)

i

∣∣ Vki ,Vki−1)+∑M
j=1 log g

(
H

(j)
i

∣∣ H̃(j)
i

)
.

11: end for
12: Importance re-sampling of particles {wki ,Vki } ∼ f(Vi | Zi) .
13: end for
14: Accumulate log-likelihood, l̂← 1/Nt

∑Nt

i=0

∑Np

k=1w
k
i .

15: return l̂

3.1 The Open Computing Language

Opencl is an open standard for heterogeneous computing developed and
maintained by the Khronos Group [3]. The standard provides a general
framework for developing highly parallel algorithms. Defined in the standard
is a parallel programming language, a parallel device execution model and a
C application programming interface library for serial programs to manage
and utilises parallel devices.

The Opencl standard abstracts any device capable of parallel code execution.
A device is comprised of asynchronous compute units, each of which is com-
posed of processing elements that execute in a single instruction, multiple data
fashion. Parallel functions in Opencl, called kernels, define the operations
of a work item which executes on a processing element. Work items can be
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grouped to ensure that they execute on the same compute unit and share
local memory.

One of the main advantages of Opencl is that any device that has a vendor
supported implementation of Opencl can be targeted. Furthermore, the
target need not be selected until runtime, allowing the code to query available
vendors and devices before compilation of device programs. The second
important advantage of Opencl is that it automatically enables reasonably
fair benchmark comparisons of architectures. This is an important point and
the focus of this article as the common rhetoric of gpus giving 100× speed
improvements is often due to poor device comparisons [8].

3.2 Parallel particle filter

Two components of our algorithm lend themselves to parallelisation. First,
a shower of particles is used for the Monte Carlo integration of equations
(9) and (10). Each forward step in the calculation of the likelihood function
is parallelised as particles execute independently of each other. Second is
the evaluation of the coefficients of the approximating Fourier series of the
transitional density.

Given N particles sampled from f (Vi−1 | Zi−1), the following actions are
performed for each particle.

• Simulate the Euler–Maruyama discretisation of the physical model for-
ward to ti to sample f (Vi | Vi−1). This is given in line 8 of Algorithm 1.

• Evaluate f (Xi | Vi,Vi−1) as provided in Section 2. This includes eval-
uation of Fourier coefficients and option prices (lines 3 and 9 of Algo-
rithm 1).

The results of the particle shower are then accumulated to generate the final
likelihood contribution for that time period. A new set of particles are then
generated from f (Vi | Zi) using importance re-sampling.
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4 Performance

We now provide results of our theoretical and experimental analysis of the per-
formance of the particle filter method. We also compare our implementation
against the cuda C implementation of Hurn et al. [5] to show consistency
between Opencl and cuda for the same device.

4.1 Theoretical analysis

The most significant computational aspect of our approach is the evaluation
of the log-likelihood function for a given set of model parameters. The number
of double precision floating point operations (flops) needed in this evaluation
is

CL = 1+ 2Cdiv + 7Cexp + CF + CS + CI +NtCPF , (17)

and

CF = 1+ 544Dm ,
CS = 5+ Cdiv + Csqrt +Nb (9+ Csqrt) ,
CPF = Np [2+ Cdiv + Csqrt + Clog +Ns(15+ 2Csqrt)]

+NpNo [23+ 4Cdiv + 3Clog + Cexp

+Nf (30+ 2Cdiv + Cexp + 4Ctrig)] ,

where CF, CS and CPF are the flops for Fourier coefficient calculation, particle
filter initialisation (via burn-in simulations) and the particle filter, respectively;
Cdiv, Csqrt, Cexp, Clog and Ctrig are the average number of flops required for
standard mathematical operations, Dm is the maximum days to maturity for
an option, and No is the average number of options on an asset at any given
time.

For our experiments we used Nt = 4 538 , Np = 32 768 , Ns = 4 , No = 4 ,
Nb = 3 024 , Nf = 200 , Dm = 90 , Cdiv ≈ 2 , Csqrt ≈ 3 , Cexp ≈ Clog ≈
Ctrig ≈ 120 . An entire mle for model parameters evaluates on average
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Table 1: Theoretical performance of a mle evaluation on cpu, gpu and mic
architectures.

Device Model Rmax run time (mins)
Intel cpu e5-2670 166 gflops 83
Nvidia Tesla gpu m2090 666 gflops 21
Intel Xeon Phi 5110p 1 000 gflops 14

11 log-likelihood calls. Thus, the total number of flops is ≈ 11 × CL ≈
11× 7.6× 1013 = 8.36× 1014 .

Using the theoretical peak performance Rmax of an architecture we calculated
the theoretical run time. This was done for an Intel e5-2670 (8 core), an
Nvidia m2090 Tesla gpu (512 cuda cores) and an Intel Xeon Phi 5110p Many-
Integrated-Core (mic) co-processor (60 core). These devices were selected
as they are similar technology generations. Table 1 lists the results. The
theoretical improvement of the gpu over a single cpu is far less than the
common rhetoric of 10×–100×.

4.2 Experimentation

To simulate a fixed number of particles, several different work group sizes are
possible. The optimum is dependent on the specific computation architecture
used. We measured the average run times for our mle implementation for
work group sizes 2m with m ∈ [4, . . . , 12] .

Figure 1 gives the run times as a function of group size. The different devices
have different behaviour; in particular, the Intel cpu is much less sensitive
to the work group configuration. Run times should also be put into context
with the original cuda implementation which has an average run time of
48 minutes on the m2090 using 512 blocks (i.e., cuda nomenclature for
Opencl work groups).

The run times in Figure 1 are also converted to an estimated measure of
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Figure 1: Performance of the particle filtering algorithm using 32 768 particles
for cpu, gpu and mic devices.

power consumption based on the maximum power output of the device and
our estimated flop count in Section 4.1. The results, given in Figure 2, show
that the difference in the maximum flops per Watt for each of the devices is
much less than the difference in raw compute times.

4.3 Evaluation

From our theoretical run time evaluations we evaluate how efficiently our
Opencl implementation utilises the available resources. Figure 3 shows this
efficiency (i.e., the percentage of theoretical performance measured experi-
mentally) as a function of work group size.

The gpu and mic processors are severely under utilised with maximum
efficiencies under 50% and 30%, respectively. There are many factors that are
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Figure 2: gflops/Watt for the particle method using 32 768 particles for
cpu, gpu, and mic devices.

likely to be responsible for this, such as data transfer overheads over the pci-e
bus, or higher dependency on purely vectorised code and memory alignment.
The more general purpose cpu is certainly less sensitive to such factors and
this is reflected in the much higher efficiency measured.

From these experimental and theoretical results, we fairly compare the effec-
tiveness of using accelerators for derivative pricing using stochastic volatility
models, such as the Heston model. Theoretical analysis indicates that there is
potential for up to 4× to 6× speed-up over a typical server cpu by using a gpu
or mic device. However, in practice, this speed-up is not readily attained by
a direct implementation in cuda C or Opencl. Rather counter-intuitively, it
would seem that such languages are more effective at utilising a standard cpu.

The observed efficiency of cpus compared to gpus is important in the
context of many reported speed-ups from using gpus. It indicates that such
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Figure 3: Efficiency percentage of the particle method with 32 768 particles
for cpu, gpu and mic devices.

exaggerated claims as 100× [8] performance improvement are more indicative
of forcing a streaming programming model (such as cuda C or Opencl) onto
an algorithm as opposed to any underlying advantage of the gpu architecture.
Our results indicate that gpus and mic processors can be used to achieve
speed-up, but achieving more than 2.5× without significant attention to
low-level optimisation is unlikely when the comparison is a fair one.

5 Conclusion

This article built upon the work of Hurn et al. [5, 6] to develop a multi-platform
implementation of a maximum-likelihood estimator for the Heston stochastic
volatility model using particle filtering and Fourier series approximations for
derivative pricing. Our theoretical and experimental analysis evaluates the
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effectiveness of different computational architectures in terms of run time,
flops per Watt, and efficiency when compared with the theoretical flop
counts. Our findings suggest that accelerators have the potential to provide
modest speed-up, but the effort to reach this speed-up is high when fair
comparisons are made. Furthermore, if speed-ups of the order of 100× are
required, then changing the programming model or improving the algorithm
is more effective than targeting a specific device alone.
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