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Abstract

Improvements to models of battle attrition are necessary because
current models cannot explain battle attrition. Agent based simulations
indicate that calculated attrition is substantially different when agents
are not assumed to have unlimited detection capabilities. However,
agent based models are limited to small force sizes and there is no
evidence that the changes in calculated attrition occur for large force
sizes. We develop a probabilistic model, based on Bernoulli trials, to
check if limited detection capabilities result in significant changes to
calculated attrition when force sizes are large, as in battle datasets.
Our model is a search model and we convert it to an attrition model
via the same processes used in current models, and include the same
assumptions for factors other than detection range. We find two series
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solutions to the model, one for small force sizes, the other for large
force sizes, and find numerically that the two solutions strongly overlap.
The new model makes a difference to calculated attrition when force
sizes are small, but not when they are large. However, the model makes
a difference to calculated attrition for all force sizes if the battlefield
area is increased to maintain a sparse force density. Our approach is
mathematical, not requiring application knowledge, and several of the
assumptions underlying mass action models are raised in our discussion.
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1 Introduction

If complex applications are sufficiently regular and those regularities can be
learnt, then applications can be managed intuitively by experienced practi-
tioners [5, pp. 240]. We may be able to derive equations to explain the data in
such applications. Over the past century, several applications were modelled
by mass action and, although the modelling resulted in many publications,
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the models were not so successful in explaining application data, resulting in
a call for better models in various applications, including infectious disease
transmission [4]. Our interest is in finding better models of battle attrition.

Mass action models of battle attrition define connections between force sizes
and the attrition suffered by each force, and are useful when force sizes, or
population sizes, are the only important variables. When the predictions of
mass action models are compared with battle data, there are large unexplained
errors (with coefficient of determination R2 = 0.1) [8, 9]. Problems due to
temporal aggregation of the data [13] were reduced through the use of ratio
models [14]. Large errors between models and data can indicate the need for
one or more extra variables. Can we introduce new variables that explain
the variance in battle attrition without making the models too complex for
practical use? The identification of important variables from battle datasets
has proven difficult, and although we recently showed [15] that combat support
resources (such as artillery, tanks and aircraft) are important, what form the
influence takes cannot currently be derived from battle data.

We use one of the current mass action models and all but one of its assumptions
to create a more complex model with extra variables: a probabilistic model
based on Bernoulli trials. The addition of extra complexity is justified if
attrition estimates are significantly changed. We remove the assumption that
force members have an unlimited detection range and replace it with finite
detection ranges. This approach does not require application knowledge and
can be used to identify a set of variables that make a significant difference
to the calculated values of attrition. Finite detection ranges are chosen for
this initial attempt because simulation results indicate that they make a
difference to estimated attrition [6]. However, simulations are limited to small
force sizes and results may not scale up to larger force sizes. To isolate the
effect of detection range, the new model is based on the other simplifying
assumptions used in mass action attrition models. We aim to determine if
finite detection ranges predict attrition that is significantly different from the
attrition predicted by standard mass action models. The other assumptions
of mass action models will be tested separately in the future.
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1.1 Homogeneous Lanchester models

Homogeneous mass action models of battle attrition were developed indepen-
dently by Chase [1], Osipov [11] and Lanchester [7]. Chase was a naval officer
whereas Lanchester was a motor and aviation engineer mostly interested in
aerial dogfights. Climactic naval battles and dogfights allow assumptions
about all combatants being able to see and hurt all others. Both Chase and
Lanchester used a bottom up approach based on simplified military theory.
Osipov, an Army surveyor, worked empirically from a database of historical
battles.

In mass action models, all variables other than force populations are rep-
resented by constant coefficients. In a detailed sense, this is unrealistic:
coefficients will only be constant for short periods over small areas [10]. In
an averaged or aggregated sense, constant coefficients imply the assumption
that other variables are unimportant.

We refer to the two forces fighting a battle as the X-force and the Y-force.
The following descriptions of the Lanchester equations are based on the work
of Taylor [16].

1.1.1 Direct fire model—the square law

In the direct fire model, x(t) is both the number of shooters for the X-force
and the number of targets for the Y-force, with a similar dual meaning for y(t).
The attrition rate for each force is proportional to the number of shooters on
the opposing force,

dx

dt
= −ay ,

dy

dt
= −cx , (1)

where a and c are constant.

The direct fire model state equation is formed from equation (1):

dx

dy
=
ay

cx
. (2)
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By integrating equation (2) we see that the quantity cx2 − ay2 is conserved.
Because of this conserved quantity, equation (1) is often called the square
law.

1.1.2 Empirical model—the log law

A second model is based on the results of tank trials [12]. Here the attri-
tion rate for a force is proportional to its own size. Although we use the
same pronumerals for the constants as in equation (1), they have different
dimensions in the two cases:

dx

dt
= −ax ,

dy

dt
= −cy . (3)

The state equation,
dx

dy
=
ax

cy
, (4)

conserves c log x− a log y . This model is often called the log law.

1.1.3 Indirect fire model—the linear law

For the indirect fire model, the attrition rate depends on both the number of
shooters and the number of targets:

dx

dt
= −axy ,

dy

dt
= −cxy , (5)

where a and c are constant. Again we use the same pronumerals as in the
previous two models, but with different dimensions. Although Lanchester [7]
stated that the indirect fire model represents the one-on-one conflicts of
ancient battles, the formulation does not quite match one-on-one fighting.
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This was observed in experiments on duelling behaviour in ants and resulted
in the modified model [2]

dx

dt
= −amin(x,y) ,

dy

dt
= −cmin(x,y) . (6)

The modified indirect fire model is actually a mixed model. If y < x , then y
suffers attrition according to the log law equation (3) while x suffers attrition
according to the square law equation (1), and the opposite for x < y .

The state equation for equation (5) is

dx

dy
=
a

c
, (7)

with conserved quantity cx− ay. This model is known as the linear law.

The initial conditions x(0) = x0 , y(0) = y0 are the same for equations (1),
(3) and (5).

2 The new model

We develop a new model, based on Bernoulli trials, where soldiers indepen-
dently seek detections. The model links the size of the area of awareness for
each soldier to the likelihood that each soldier will have a target.

Consider a particular Y-force soldier, surrounded by an area ay which repre-
sents the limits of his awareness. If the total area of the battlefield is A, then
the probability that an individual X-force soldier, is within ay is ay/A and
the probability that the X-force soldier is not within ay is 1− ay/A . There
are x X-force soldiers at time t, so the probability that none of them are in ay
is estimated by

p =
(
1−

ay

A

)x
. (8)
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The expected number of Y-force soldiers without potential targets is py, where
y is the number of Y-force soldiers at time t. Thus the expected number of Y-
force soldiers with at least one potential target is (1−p)y = [1−(1−ay/A)

x]y .

In real war, what happens when a detection is made is a matter of tactics:
equations (1), (3) and (5) assume that a soldier shoots at a target if he has
one. We use assumptions identical to those for equations (1), (3) and (5),
except we do not assume unlimited detection. We replace the number of
Y-force soldiers (y) in the Lanchester square law differential equations with
the expected number of Y-force soldiers who have at least one target, and
make the analogous change for the X-force:

dx

dt
= −ky

[
1−

(
1−

ay

A

)x]
y and

dy

dt
= −kx

[
1−

(
1−

ax

A

)y]
x . (9)

For convenience, we write (1−ay/A)x = e−αx and e−βy = (1−ax/A)
y , where

α = − log(1− ay/A) and β = − log(1− ax/A) . (10)

Thus equation (9) becomes

dx

dt
= −ky(1− e

−αx)y and
dy

dt
= −kx(1− e

−βy)x . (11)

In the limit x,y→ ∞ , equation (11) reverts to the form of the square law (1)

dx

dt
= −kyy and

dy

dt
= −kxx . (12)

When αx and βy approach zero, equation (11) approaches the form of the
linear law (5)

dx

dt
= −kyαxy and

dy

dt
= −kxβxy . (13)

For sufficiently large force sizes, our model is almost identical to the square
law, and our model is almost identical to the linear law for sufficiently small
force sizes.
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2.1 Scaling, generalisation and solution of equations

For convenience, we introduce the changes of variables X = αx and Y = βy
to equation (11) to obtain

dX

dt
= −

kyα

β

(
1− e−X

)
Y and

dY

dt
= −

kxβ

α

(
1− e−Y

)
X . (14)

The two parts of equation (14) are combined to obtain

dY

dX
=
β2kx

α2ky

(1− e−Y)X

(1− e−X)Y
, (15)

which is separable and, when integrated from (X, Y) to (X0, Y0), involves
integrals of the form

F(Z0) − F(Z) =

∫Z0

Z

s

1− e−s
ds , (16)

for Z = X, Y and Z0 = X0, Y0 . Since∫Z0

Z

s

1− e−s
ds =

∫Z0

0

s

1− e−s
ds−

∫Z
0

s

1− e−s
ds , (17)

we have

F(Z) =

∫Z
0

s

1− e−s
ds . (18)

Equation (18) is evaluated numerically. Symbolic logic programs may claim an
analytical solution in terms of the dilogarithm function, but the dilogarithm
is a simple transformation of the integral in equation (18) and also must
be evaluated numerically. To allow comparison with the square law, we opt
for approximate solutions in terms of elementary functions, and we develop
two asymptotic solutions, F1(Z) and F2(Z). We begin with the absolutely
convergent series

exs

es − 1
=

∞∑
i=0

Bi(x)
si−1

i!
, 0 < |s| < 2π , (19)
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which is the generating function of the Bernoulli polynomials Bi(x) [3]. These
are related to the Bernoulli numbers Bi through Bi(1) = Bi for i 6= 1 and
B1(1) = −B1 = 1/2 = 1 + B1 . Thus setting x = 1 in (19) and multiplying
by s provides

s

1− e−s
= s+

∞∑
i=0

Bi
si

i!
, (20)

with the series absolutely convergent for 0 < |s| < 2π . The series in equa-
tion (20) is also absolutely convergent for |s| 6 r if 0 < r < 2π . Hence it is
absolutely convergent for |s| < 2π and we integrate termwise to get

F1(Z) =
Z2

2
+

∞∑
i=0

Bi
Zi+1

(i+ 1)!
for |Z| < 2π . (21)

A second asymptotic expansion, suitable for large values of Z, is derived
for the integral in equation (18) using the relationship (1− t)−1 =

∑∞
i=0 t

i ,
where, in this case, t = e−s . Termwise integration of the resulting expansion
gives

F2(Z) =
Z2

2
−

∞∑
i=1

(
Ze−iZ

i
+
e−iZ

i2
−
1

i2

)
, (22)

which is simplified using

Z log(1− e−Z) = −

∞∑
i=1

Ze−iZ

i
, (23)

and ∞∑
i=1

1

i2
=
π2

6
, (24)

to obtain

F2(Z) =
Z2

2
+
π2

6
+ Z log(1− e−Z) −

∞∑
i=1

e−iZ

i2
. (25)
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Integration of equation (15) defines a constant valued ratio

F(Y0) − F(Y)

F(X0) − F(X)
=
β2kx

α2ky
. (26)

Equations of the same form as equation (26) also apply to the Lanchester
square law, when F(Z) = Z2 , and to the linear law, when F(Z) = Z , and
the same form of relation was found for a wide class of Lanchester style
equations [16]. In terms of the actual force sizes, equation (26) gives

F(βy0) − F(βy)

F(αx0) − F(αx)
=
β2kx

α2ky
. (27)

3 Discussion

We use equation (11), coupled with the definitions of α and β (equation (10)),
to develop approximate expressions linking x and ay/A for two cases of which
deviate from the square law: the first by 10%, representing a significant
deviation; the second by 1%, representing an insignificant deviation. For
a 10% deviation we have eαx < 0.1 , leading to

ay

A
≈ 2.3

x
, (28)

while for a 1% deviation
ay

A
≈ 4.6

x
. (29)

In Figures 1 and 2, the force sizes are ten soldiers or one hundred soldiers,
respectively, the horizontal axes are the values of ay/A, and the vertical axes
the number of searchers with detections at t = 0 (given by the right hand side
of the first equation in equation (9)). The two figures demonstrate how the
number of force members with detections is related to the awareness areas and
force sizes. For the square law, all soldiers always have detections. For Figure 1
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Figure 1: Number of searchers with detections at t = 0 for ten searchers in
each force.

there are ten soldiers in each force and attrition is approximately equivalent to
the square law when a/A = 0.4, as expected from equation (29). For Figure 2
there are one hundred soldiers in each force and attrition is approximately
the square law when a/A > 0.05, as expected from equation (29). The
proportion of the battlefield area visible to searchers depends on both the
value of a/A and the force size. When we increase the area A by the same
factor as the increase in force sizes and look at values of a/A up to 0.04, then
the results are almost the same as in Figure 1, indicating that attrition can
be significantly altered for any force size as long as the population density is
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Figure 2: Number of searchers with detections at t = 0 for 100 searchers in
each force.

sparse.

Square law assumptions that are maintained include constant search cross
sections, uniform distribution of fire, independence of individual shooters and
homogeneity of force members (e.g., in weapons). So, like models based purely
on mass action, the new model is unable to support analysis of the effectiveness
of force members taking cover when under fire, or of concentrating their fire, or
of individuals cooperating, or of heterogeneity between individuals. Uniform
distribution of fire is a way of ignoring the difference between the number of
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searchers with detections and the number of targets that have been detected.

The extra variables in our model make a difference when force sizes are small,
as in simulations, but not when force sizes are large, showing that the results
do not scale up. Since the results from our model are not consistent over all
force sizes, the new variables are unlikely to explain the evidence from battle
datasets. However, our approach can be used to remove other assumptions
and create other models.

Consider the case where ax < ay , giving the Y-force an advantage in detection
range. If neither force makes any attempt to avoid detection, then the Y-
force will always be able to surprise the X-force. If the Y-force also has an
advantage in weapon range, then they may be able to destroy the X-force
before the X-force can close the gap and begin retaliation. Normally, a force
with a disadvantage in detection and weapon ranges will use natural terrain
or engineered earthworks to provide cover and protection. By taking cover,
the force reduces its detection cross section, thus reducing the detection range
of its opponents. By using protection, a force may also be able to compensate
for a disadvantage in weapon effectiveness.

Acknowledgements Professor Charles Pearce was tragically killed in a
road accident after this model was developed.
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