
ANZIAM J. 47 (EMAC2005) pp.C310–C324, 2006 C310

Simulations of transonic flow fields around an
elastic arrow wing
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Abstract

Transonic flows are characterised by the presence of adjacent re-
gions of subsonic and supersonic flow, usually with shock waves present
at the downstream supersonic-subsonic interface. An in-house for-
tran90 computer code, tranflow3d, which is robust and capable of
simulating complex nonlinear flow fields around a double-swept-back
semispan supersonic transport wing model (of high sweep angle) at
transonic speeds is presented. The code has acceptable turnaround
times on current high performance personal computers. The flow is
governed by the general frequency, nonlinear, transonic small distur-
bance equation, subject to nonreflecting, far field, boundary condi-
tions. Numerical solution procedure based on finite difference method,
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method of false transients and approximate factorisation technique is
utilised. Chordwise distributions of steady pressure coefficient and lo-
cal Mach numbers are computed, and compared with those obtained
from wind tunnel measurements.
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1 Introduction

In Japan, a national project on supersonic transport (sst) aircraft has started,
which includes flight experiments with scaled sst models, with the objectives
of establishing Japan’s own technologies in design techniques using compu-
tational fluid dynamics (cfd) and to accumulate verification data [10] for
in-house developed aeroelasticity and cfd related computer codes. tran-
flow3d, which is a type dependent finite difference method based upon in-
house computer code implementing the method of false transients and the ap-



1 Introduction C312

proximate factorisation (af) technique, solves the three-dimensional, general
frequency, nonlinear transonic small disturbance (tsd) equation [3, 5, 7, 8].
The code is used to generate reliable approximate results for high-swept-
angle wings, like the double-swept-back sst arrow wing modelled in this
paper. Although, the tsd equation is one of the simplest forms of nonlinear
aerodynamics, the equation is capable of accurately predicting the strength
and location of weak shock waves, and because of its efficiency (relatively
low computational cost and simplicity of the griding and geometry prepro-
cessing), is generally appropriate for simulation of transonic flows.

Modification to the inviscid tsd theory and tranflow3d code is made
to include the shock generated entropy and vorticity effects [7, 8, 12], so that
flow fields with strong embedded shock waves can be correctly captured. In
the closure, comparison of computed results with jaxa’s (Japan Aerospace
Exploration Agency) experimental data [10] will be made and discussed.

2 Experimental simulation

The model considered in the simulation is an elastic, semispan, double-swept-
back arrow wing with a fuselage, as shown in Figure 1 including relevant
wing specifications. The wing surface is constructed of aluminium alloy and
urethane resin, and has an inboard trailing-edge flap of about 9.6% chord be-
tween 20% and 50% semispan, which can oscillate harmonically to produce
unsteady flow fields around the wing. Tamayama conducted the experiments
using the closed, continuous and pressurised/depressurised circulatory tran-
sonic wind tunnel at jaxa in Tokyo, Japan, for free stream Mach numbers
between 0.8 and 0.95, and at different incidence and flap angles.
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Planform 0.8890 m2

Aspect ratio 2.01
Twist none

Root chord length 2.103 m
Semispan 1 m

Taper ratio 1.0 (root section)
0.274 (57% span)
0.0783 (wing tip)

Leading-edge sweep 72.81 deg (inboard)
51.57 deg (outboard)

Trailing-edge sweep 6.57 deg (inboard)
16.94 deg (outboard)

Cross section profile naca 0003 (entire span)

Figure 1: jaxa’s scaled sst model.
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3 Numerical simulation

3.1 Governing equation and boundary conditions

A nearly planar wing is immersed in an unsteady, isentropic, and inviscid
flow. The governing aerodynamic equation of motion is the tsd equation [1,
3, 5, 7, 8], which for the reduced potential φ(x, y, z, t) is
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where M∞ is the free stream Mach number, β2 = 1−M2
∞ , ū = −β2/(2F ) (de-

notes the value of φx at sonic condition), and φx = ∂φ/∂x , etc. The spatial
coordinates (x, y, z), t and φ have been nondimensionalised by `, and `/U∞,
and `U∞, where ` and U∞ are the aerofoil chord length measured at wing root
section and free stream fluid speed, respectively. In nondimensional terms,
the fluid velocity vector is v = ∇(x + φ). Equation (1) captures nonlinear
flow phenomena, including the irregular shock wave motion observed experi-
mentally by Tijdeman [11]. Equation (1) is locally of elliptic/hyperbolic type
representing subsonic/supersonic flow when φx is less/greater than ū, and the
solution contains discontinuous jumps that approximate shock waves. Several
choices are available within tranflow3d for the coefficients F , G and H, as
tabulated in Table 1, depending upon the assumptions used in deriving the
tsd equation, and γ represents the ratio of specific heats, about 1.4 for am-
bient air. The linear equation (where F , G and H are all zero) also known as
the subsonic/supersonic small disturbance equation when M∞ is less/greater
than one.

In the flow field, nonreflecting boundary conditions derived from the the-
ory of wave propagation are utilised at the outer boundaries of the computa-
tional region, and the Kutta condition is satisfied in the wake region behind
the wing [1, 3, 5]. tranflow3d offers two different sets of nonreflecting
boundary conditions for use in the simulations; one is based on the work of
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Table 1: Formulae for coefficients F , G and H.
Coefficients Type F G H

nasa Ames −1
2
(γ + 1)M2

∞
1
2
(γ − 3)M2

∞ (1− γ)M2
∞

nlr −1
2

[
3 + (γ − 2)M2

∞
]
M2

∞ −1
2
M2

∞ −M2
∞

Classic equation −1
2
(γ + 1)M2

∞ 0 0

Linear equation 0 0 0

Gear [3, 5], and the other due to Batina [1]. Furthermore, smoothing of the
wing slopes is sometimes required for highly swept wings, so that unrealistic
results (high pressure peaks) at the leading edge will not form as part of the
solution. In the smoothing process, the slope is altered in a smooth continu-
ous manner at all points along the wing profile, so that when the slope is very
large (near the leading edge) the slope reduces to unity. Elsewhere, when the
slope is small, little change occurs. Such modifications are applied locally to
enhance stability without degrading the results outside of the nose region.

3.2 Algebraic mapping process

To facilitate the use of high density of grid points surrounding the wing [3, 5],
without resolving to utilising a large number of points, a smooth nonuniform
computational mesh is constructed based on the following mapping functions,

ξ = ξ(x, y) , η = η(y) and ζ = ζ(z) ,

where (ξ, η, ζ) are the dimensionless computational coordinates in the (x, y, z)
direction. The far field boundaries are kept independent of the wing and
aligned with respect to the free stream direction, so that both the physical
and computational domains are contained within rectangular block regions.
Figure 2 depicts a transformed grid (with most grid planes removed for clar-
ity in the illustration) used in the simulations, it consists of 90, 45 and 100
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Figure 2: Transformed grid used in the simulations.

points in the (ξ, η, ζ) directions, a total of 405,000 internal grid points. On the
wing, 64 and 30 points are allocated in the chordwise and spanwise direction,
respectively, with 10 and 16 points for the region upstream and downstream
(wake region) of the wing, and 15 points for the region extended between
the wing tip and far field spanwise boundary. The far field streamwise com-
putational boundaries are positioned at a distance of 2` from the wing, the
spanwise boundary at 1.5` from the wing symmetry axis, and vertical bound-
aries are at 3` above and below the wing.

3.3 Numerical solution procedure

The method of false transients [4, 6] is employed to compute steady-state
solutions, where the time derivative of the tsd equation, Equation (1), is
replaced by an “artificial” time derivative to incorporate temporal numerical
dissipation. This term is then approximated by a generalised time difference
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rule, written in Padé form at time-level τn = n∆τ , resulting in
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Here τ is the artificial time scale, ∆τ is the artificial time step, J is the Jaco-
bian of the transformation matrix, and φn

ξ denotes the value of φξ evaluated
at time level τn.

Equation (2) is approximately factorised [6], and second order accurate
central difference rules are then applied to all spatial derivatives; except for
the first nonlinear spatial term which is evaluated by second order accurate
Engquist–Osher type dependent operators in either standard form due to
Engquist and Osher [2], or the modified form developed by Phillips, Gear
and Ly [3, 9]. Conservative differencing of the governing equation is pre-
served, an essential requirement for a proper description of the shock waves.
The resulting scheme is potentially fast, because the solution process is fully
vectorised and time-step cycling is used to enhance the rate of convergence.

Rotational effects become significant when strong shock waves exist in
the flow field, since vorticity is generated due to the entropy changes along
the shock. Such effects are excluded in the conventional tsd theory because
of the irrotationality assumption necessary for the existence of a velocity
potential. In this article, the streamwise flux of Equation (2) is modified to
accommodate such effects by treating the velocity vector as a sum of potential
and rotational components [7, 8, 12], and the rotational component assumed
to exist only in the region behind the shock wave.
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Figure 3: Comparison of results (α = 0◦, δ = 0◦).
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Figure 4: Comparison of results (α = 0◦, δ = 5◦).
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Figure 5: Steady local Mach numbers (α = 0◦, δ = 0◦).

4 Comparison and discussion of results

Once the reduced potentials are determined, pressure coefficients, Cp(x, y, z, t),
are computed using a first order approximation formula, Cp = −2φx . A sec-
ond order formula, Cp = −(2 + β2φx)φx , is also available for use within the
code.

Numerical simulations were performed for the wing model at angle of
attack α = 0◦ with the inboard flap deployed at δ = 0◦ and δ = 5◦ angle,
and compared with the jaxa’s experimental data [10] in Figures 3 and 4. In
these figures, Cp is scaled with the critical pressure coefficient, C∗

p = −2ū ,
and so locally supersonic points are indicated by Cp/C

∗
p > 1 values. The

computed results compare very well with the experimental data, especially
the well-captured pressure peaks due to the flap as shown in Figure 4, except
for some discrepancies which exist in the flap region. This may be caused by
the manner in which the wing model is constructed. In the outboard wing,
all pipes and electrical wires from the pressure transducers were drawn to the
inboard wing passing through a channel on the lower wing surface, and filled
with resin where the finishing of the resin surface might be inadequate. A
small supersonic region in an otherwise subsonic flow field begins to develop in
the outboard region of the wing at M∞ = 0.9 (see Figure 4) and a shock wave
begins to develop in the nose region near the wing tip as shown in Figure 5.
In Figure 6 the shock wave becomes fully developed when M∞ reaches 0.95 ,
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Figure 6: Steady local Mach numbers (α = 0◦, δ = 0◦).

and moves from about 25% to 75% chord as M∞ increases from 0.95 to 0.98 .
Figure 7 depicts the steady local Mach numbers distribution on the wing
upper and lower sides at M∞ = 0.98 with the flap deployed at 5◦ angle.
Shock waves are clearly shown on both sides of the wing, with the upper
side shock advanced further towards the trailing edge than the lower side
counterpart. Also, a high pressure region due to the flap is evident.

5 Concluding remarks

The solution method, incorporating the wing slope smoothing and shock
generated entropy and vorticity effects, has been developed and applied to
the jaxa’s elastic sst wing model. Excellent comparison between the com-
puted results and wind tunnel measurements indicated that realistic accu-
rate transonic flow solutions can be obtained from using the tranflow3d
code. tranflow3d is an ideal tool that allows researchers to perform three-
dimensional transonic aeroelastic analysis (for which only small incidences are
considered), and for students to experience aerodynamic computations, in ac-
ceptable turnaround times on current high performance personal computers.
Finally, there is a future potential for a three-dimensional time linearised
version (for which only infinitesimal amplitude motions need be considered)
as a fast method to be used for unsteady flutter prediction.
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References

[1] Batina, J. T. Unsteady transonic algorithm improvements for realistic
aircraft applications, Journal of Aircraft, 26, 2, 1989, pp. 131–139.
C314, C315

[2] Engquist, B., and Osher, S. Stable and entropy satisfying
approximations for transonic flow calculations, Mathematics of
Computation, 34, 149, 1980, pp. 45–75. C317

[3] Gear, J. A., Ly, E., and Phillips, N. J. T. Time marching finite
difference solution of the modified transonic small disturbance
equation. In J. Noye, M. Teubner, and A. Gill, editors, Proceedings of
the 8th Biennal Computational Techniques and Applications
Conference (CTAC97), World Scientific, pp. 209–216. C312, C314,
C315, C317

[4] Ly, E. Improved approximate factorisation algorithm for the steady
subsonic and transonic flow over an aircraft wing. In Proceedings of the
21st Congress of the International Council of the Aeronautical Sciences
(ICAS98), Melbourne, Australia, Sep. 1998, Paper A98-31699. C316

[5] Ly, E., and Gear, J. A. Time-linearized transonic computations
including shock wave motion effects, Journal of Aircraft, 39, 6, 2002,
pp. 964–972. C312, C314, C315



References C323

[6] Ly, E., Gear, J. A., and Phillips, N. J. T. Improved approximate
factorisation algorithm. In J. Noye, M. Teubner, and A. Gill, editors,
Proceedings of the 8th Biennal Computational Techniques and
Applications Conference (CTAC97), World Scientific, pp. 393–400.
C316, C317

[7] Ly, E., and Nakamichi, J. Algorithm for calculating time-linearised
transonic solutions including shock motion and shock-generated
entropy and vorticity effects. In Proceedings of the Japan Society for
Aeronautical and Space Sciences (JSASS) 16th International Sessions
in 40th Aircraft Symposium Incorporating Japan-Korea Joint
Symposium 2002, JSASS, Yokohama, Japan, Oct. 2002, pp. 117–120.
C312, C314, C317

[8] Ly, E., and Nakamichi, J. Time-linearised transonic computations
including entropy, vorticity and shock wave motion effects, The
Aeronautical Journal, 107(1077), Nov. 2003, pp. 687–695. C312,
C314, C317

[9] Phillips, N. J. T., Gear, J. A., and Ly, E. Type-dependent differencing
schemes for transonic flow computation. In J. Noye, M. Teubner, and
A. Gill, editors, Proceedings of the 8th Biennal Computational
Techniques and Applications Conference (CTAC97), World Scientific,
pp. 537–544. C317

[10] Tamayama, M., Saitoh, K., Matsushita, H., and Nakamichi, J. nal
sst arrow wing with oscillating flap. Verification and validation data
for computational unsteady aerodynamics, Research and Technology
Organization (RTO), RTO-TR-26, France, Oct. 2000, pp. 295–318.
C311, C312, C320

[11] Tijdeman, H. Investigations of the transonic flow around oscillating
airfoils. NLR, NLR-TR-77090U, The Netherlands, Oct. 1977. C314



References C324

[12] Whitlow, W., Jr., Hafez, M. M., and Osher, S. J. An entropy
correction method for unsteady full potential flows with strong shocks,
Journal of Fluids and Structures, 1, 1987, pp. 401–414. C312, C317


	Introduction
	Experimental simulation
	Numerical simulation
	Governing equation and boundary conditions
	Algebraic mapping process
	Numerical solution procedure

	Comparison and discussion of results
	Concluding remarks
	References

