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Moving boundary shallow water flow above
parabolic bottom topography
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Abstract

Exact solutions of the two dimensional nonlinear shallow water
wave equations for flow involving linear bottom friction and with no
forcing are found for flow above parabolic bottom topography. These
solutions also involve moving shorelines. The motion decays over time.
In the solution of the three simultaneous nonlinear partial differen-
tial shallow water wave equations it is assumed that the velocity is a
function of time only and along one axis. This assumption reduces
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the three simultaneous nonlinear partial differential equations to two
simultaneous linear ordinary differential equations . The solutions
found are useful for testing numerical solutions of the nonlinear shal-
low water wave equations which include bottom friction and whose
flow involves moving shorelines.
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1 Introduction

Exact solutions of the nonlinear shallow water wave equations were found
by Thacker [6] for frictionless flow involving the Coriolis force in parabolic
canals. The solutions involve moving shorelines. The motion is oscillatory
and continues indefinitely over time.

Our work builds on the work of Thacker [6]. As far as we are aware there
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have been no other analytical solutions of the nonlinear shallow water wave
equations as a consequence of the work of Thacker [6] apart from an article by
Sampson, Easton & Singh [5]. Balzano [1], Holdahl, Holden & Lie [2], Lewis
& Adams [3], Peterson, Hauser, Thacker & Eppel [4] and Yoon & Cho [8]
compared numerical solutions of the nonlinear shallow water wave equations
with some of the analytical solutions in Thacker [6].

Here exact solutions of the two dimensional nonlinear shallow water wave
equations for flow involving linear bottom friction and without Coriolis force
are found for flow above parabolic bottom topography. These solutions also
involve moving shorelines. The motion decays over time.

2 Thacker’s solutions

Thacker [6] considered the case where the motion of shallow water in a basin
is governed by the equations [7]

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV + g

∂ζ

∂x
= 0 , (1)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ fU + g

∂ζ

∂y
= 0 , (2)

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0 , (3)

where ζ(x, y, t) is the height of the water surface above mean water level,
z = −h(x, y) is the bottom surface, U(x, y, t) is the depth averaged velocity
component of the water current to the East, V (x, y, t) is the depth averaged
velocity component of the water current to the North, g is the acceleration
due to gravity, f is the Coriolis parameter and t is the time.

Thacker assumed that

U = u0(t) , (4)
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V = v0(t) . (5)

It can be shown that equations (1) and (2) together with equations (4) and (5)
imply that

ζ(x, y, t) = ζ0(t) + xζ1(t) + yζ2(t) , (6)

where

ζ1(t) = −1

g
(
du0(t)

dt
− fv0(t)) , (7)

ζ2(t) = −1

g
(
dv0(t)

dt
+ fu0(t)) . (8)

Thacker assumed that flow takes place in the parabolic canal

h = h0(1−
x2

a2
) , (9)

with h0 and a constant.

Substituting (4) and (5) in (3) gives

dζ0 (t)

dt
+x

dζ1 (t)

dt
+ y

dζ2 (t)

dt
− 2u0(t)h0x

a2
+u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0 . (10)

Equating the time-varying coefficients of the linearly independent terms 1,
x and y leads to

dζ0 (t)

dt
+ u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0 , (11)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0 . (12)

dζ2 (t)

dt
= 0 . (13)

Substituting (7) in (12) gives

d2u0 (t)

dt2
− f

dv0

dt
+

2gh0u0 (t)

a2
= 0 . (14)
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Substituting (8) in (13) gives

d2v0 (t)

dt2
+ f

du0

dt
= 0 . (15)

Substituting (7) and (8) in (11) gives

dζ0 (t)

dt
− 1

g
u0(t)

du0

dt
− 1

g
v0(t)

dv0

dt
= 0 . (16)

Thacker gave solutions to equations (14), (15) and (16) without explain-
ing how he obtained his solutions. We discuss below how one could obtain
Thacker’s solutions. If one differentiates (14) with respect to t and makes
use of (15) one obtains a third order differential equation for u0(t):

d3u0(t)

dt3
+ (f 2 +

2gh0

a2
)
du0(t)

dt
= 0 . (17)

A solution is
u0(t) = −GΩ sin(Ωt) , (18)

where G is a constant and

Ω =

(
f 2 +

2gh0

a2

)1/2

. (19)

Substitution of (18) in (15) gives the solution

v0(t) = −Gf cos(Ωt) . (20)

Substitution of (18) and (20) in (16) and then integration with respect to t
gives the solution

ζ0(t) = −G2h0

a2
cos2(Ωt) . (21)

Substitution of (18) and (20) in (7) gives

ζ1(t) =
2Gh0

a2
cos(Ωt) . (22)
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Substitution of (18) and (20) in (7) gives

ζ2 = 0 . (23)

Substitution of (21) and (22) and (23) in (6) gives

ζ(x, y, t) = −G2h0

a2
cos2(Ωt) +

2Gh0

a2
(cos(Ωt))x . (24)

At the shoreline the total depth is

h + ζ = 0 . (25)

Substitution of (9) and (24) in (25) gives the shorelines

x = G cos(Ωt)± a . (26)

3 Model equations

We consider the case where the motion of shallow water in a basin is governed
by the equations [7]

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ τU + g

∂ζ

∂x
= 0 , (27)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ τV + g

∂ζ

∂y
= 0 , (28)

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0 , (29)

where τ is the bottom friction parameter, g is the acceleration due to gravity
and t is the time. The bottom friction parameter, τ , is considered to be
constant.

Equations (27), (28) and (29) differ from Thacker’s equations in that
whereas Thacker’s equations included Coriolis force terms ( see Section 2)
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for Thacker’s solutions) but did not include friction terms, equations (27),
(28) and (29) do not include Coriolis force terms, but do include friction
terms.

Thacker [6] assumed that U and V were functions of t only. Here we
assume

U = u0(t) , (30)

V = 0 , (31)

Then equations (27) and (28 ) together with equations (30) and (31) imply

ζ(x, y, t) = ζ0(t) + xζ1(t) , (32)

where (27) and (30) imply

ζ1(t) = −1

g
(
du0(t)

dt
+ τu0(t)) , (33)

It will be shown later how ζ0(t) is determined. Equation (32) shows that at
any time t the water surface is a plane.

We consider flows above parabolic bottom topography. The discussion
in Section 4 is similar to that in Thacker [6], but because the shallow water
equations (27) and (28) used in this article have a slightly different form to
Thacker’s and we make slightly different assumptions about the velocity’s
functional form, the discussion leads to different conclusions.

4 Flow above parabolic bottom topography

Following Thacker, assume that

h = h0(1−
x2

a2
) , (34)
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with h0 and a constant, so that flow takes place above parabolic bottom
topography.

Substituting (30), (31), (32), and (34) in (29) gives

dζ0 (t)

dt
+ x

dζ1 (t)

dt
− 2u0(t)h0x

a2
+ u0(t)ζ1 (t) = 0 . (35)

Following Thacker, equate the time-varying coefficients of the linearly inde-
pendent terms, 1 and x respectively,

dζ0 (t)

dt
+ u0(t)ζ1 (t) = 0 , (36)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0 . (37)

Substituting (33) in (37)

d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0 . (38)

Substituting (33) in (36)

dζ0 (t)

dt
− 1

g
u0(t)

du0

dt
− τ

g
u0(t)

2 = 0 . (39)

Equation (38) has to be solved for u0(t).

As equation (38) is a second order differential equations, it requires two
boundary conditions. The solution of (38) can be substituted in (39), which
is first order and hence needs one boundary condition to be solved uniquely
for ζ0(t).

The auxiliary equation for (38) is

λ2 + τλ +
2gh0

a2
= 0 . (40)
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The roots of (40) are

λ =
−τ ±

√
τ 2 − p2

2
. (41)

where

p =

√
8gh0

a2
. (42)

Hence, the three possible solutions of (40) are for when τ < p , τ > p , and
τ = p . Consideration of some typical values of a, h0 and τ shows that all
the possible solutions are realistic solutions of (40). Thus there are three
realistically possible solutions of (38). The solutions of (32), (36) and (38)
for τ < p , τ > p and τ = p are discussed in the following three subsections.

4.1 Flow for τ < p

If τ < p , then a solution of (38) is

u0(t) = Be−τt/2 sin st (43)

where B is a constant, obtained by using given values for u0(0) and u′
0(0),

and where

s =

√
p2 − τ 2

2
. (44)

It can be seen from (43) that as t →∞ , u0(t) → 0 .

Substituting (43) in (39) and integrating with respect to t gives

ζ0(t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g
, (45)

with the constant of integration being zero because it is assumed that as
t →∞ , ζ0(t) → 0 .
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Substituting (43) in (33)

ζ1(t) = −e−τt/2

g

(
Bs cos st +

τB

2
sin st

)
. (46)

Substituting (45) and (46) into (32)

ζ(x, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g

− e−τt/2

g

(
Bs cos st +

τB

2
sin st

)
x . (47)

It can be seen that as t → ∞ , ζ(t) → 0 ; that is, the displacement of the
fluid from equilibrium gradually dies out over time, which is the result that
one would expect with a bottom friction force acting on the fluid.

At the shoreline, the total depth

h + ζ = 0 . (48)

Substituting (34) and (47) in (48) gives(
x− a2e−τt/2

2h0g

(
−Bs cos st− τB

2
sin st

))2

= a2 . (49)

Hence, the projection of the moving shorelines on the xy plane is two parallel
straight lines:

x =
a2e−τt/2

2h0g

(
−Bs cos st− τB

2
sin st

)
± a . (50)

The water moves backwards and forwards across the canal with motion dying
out as t →∞ . As t →∞ the shorelines approach

x = ±a , (51)
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Figure 1: The development of the motion of fluid in a parabolic canal for
which a = 3km, h0 = 10m, and τ = 0.001 s−1, for motion in which B = 5
ms−1, from t = 0 s to t = 3400 s, in increments of 200 s. Dimensions are in
metres on the vertical axis and on the horizontal axis.
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the shorelines for an undisturbed surface, and ζ → 0 , so that friction will
cause the initial disturbance to eventually die out.

Consider a canal for which a = 3km, h0 = 10m, and τ = 0.001 s−1, for
motion in which B = 5ms−1. The development of the motion from t = 0 s
to t = 3400 s, in increments of 200 s is shown in Figure 1.

4.2 Flow for τ > p

When τ > p then a solution of (38) is

u0(t) = Bert , (52)

where B is a constant, obtained by using given values for u0(0) and u′
0(0),

and where

r =
−τ −

√
τ 2 − p2

2
. (53)

It can be shown that

ζ(x, t) =
1

g

((
r + τ

2r

) (
B2e2rt

))
− 1

g
(r + τ) Bertx . (54)

The projection of the moving shoreline on the xy plane is two parallel straight
lines

x = − a2

2gh0

(
B(r + τ)ert

)
± a . (55)

4.3 Flow for τ = p

When τ = p then the solution of (38) is

u0(t) = e−τt/2(A + Bt) (56)

where A and B are constants. It can be shown that

ζ(x, t) = −e−τt

τ

(
1

g

(
AB +

τA2

2

)
+

1

g

(
B2 + τAB

) (
t +

1

τ

))



4 Flow above parabolic bottom topography C385

− e−τt

(
B2

2g

(
t2 +

2t

τ
+

2

τ 2

))
− x

g

(
B +

τ

2
(A + Bt)

)
e−τt/2 . (57)

The projection of the moving shoreline on the xy plane is two parallel straight
lines:

x = − a2

2gh0

e−τt/2
(
B +

τ

2
(A + Bt)

)
± a . (58)

5 Conclusions

Exact solutions of the two dimensional nonlinear shallow water wave equa-
tions in the case of flow involving bottom friction and without the Coriolis
force have been found for flow in a parabolic canal. These solutions also
involve moving shorelines. The motion decays over time, which is what one
would expect in a motion involving friction and no input force. In contrast,
Thacker found exact solutions of the two dimensional nonlinear shallow water
wave equations in the case of flow involving the Coriolis force but without
bottom friction for flow in a parabolic canal. These solutions also involve
moving shorelines. The motion is oscillatory and continues indefinitely over
time, which is what one would expect in a motion involving no friction.

The solutions found in this paper are useful for testing numerical solutions
of the nonlinear shallow water wave equations which include bottom friction
and whose flow involves moving shorelines. Testing of the analytical solutions
against two numerical schemes showed the numerical results to be in close
agreement with the analytical solutions.
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