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A two way particle mapping for calculation of
the shear modulus of a spherical inclusion
composite with inhomogeneous interphase
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(Received 31 October 2005; revised 10 August 2006)

Abstract

Based on the Mori–Tanaka method and a replacement scheme,
a pair of coupled first order differential equations which model the
shear modulus of a particulate composite with inhomogeneous inter-
phase are derived. However, the results derived are not exact since
the Mori–Tanaka method is not exact for the shear problem. An im-
proved model is therefore proposed which utilises the generalised self
consistent scheme for a spherical inclusion that is surrounded by a
hypothetical homogeneous interphase layer. To find the properties of
this hypothetical interphase layer a mapping of a homogeneous par-
ticle onto a two phase composite is utilised. The results are then
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presented for a simple power law profile and are shown to be consis-
tent with the conclusions of Shen and Li [Int. J. Solids and Struct.,
40, 2003, 1393–1409].
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1 Introduction

A material, such as a polymer, that has some sort of reinforcing filler (or
inclusion) embedded within it is known as a polymer composite. Fillers are
added to the polymer with the aim of either improving the mechanical, ther-
mal or electrical properties of the polymer or of improving a combination of
these properties. The resulting composite material has many advantages over
the original polymer and is therefore more suitable for particular applications
than other more traditional materials.

Of particular importance on the overall mechanical properties of a com-
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posite is the interphase which is a three dimensional region immediately
surrounding the inclusion. The bonding between the matrix and the inclu-
sion occurs across this region and the stiffness properties of this region differ
from that of the matrix and the inclusion.

Earlier work modeling the mechanical properties of composite materials
ignored the effects of an interphase and are considered as two phase com-
posites. The shear modulus of a two phase composite consisting of isotropic
spherical inclusions surrounded by an isotropic matrix has been derived by
Weng [2] using the Mori–Tanaka method [3] and a different expression has
also been derived by Christensen & Lo [4] using the Generalised Self Con-
sistent (gsc) Scheme. The Generalised Self Consistent method provides the
exact solution to the shear problem.

In this work the shear modulus for a two phase composite containing
spherical inclusions as derived by Weng [2] using the Mori–Tanaka method
is used, to account for an inhomogeneous interphase region surrounding each
inclusion. A replacement method is used as has been done for the bulk
modulus case [5]. The results for any profile of the interphase region are
generalised by deriving a coupled pair of first order differential equations. The
differential equations are then solved exactly for the same power law profile
given in [5], giving a closed form solution for the shear modulus. Since the
differential equations that are derived are based on the Mori–Tanaka solution
for the shear modulus which is only an approximation, an improved model
based on the generalised self consistent method incorporating a homogeneous
interphase is proposed. The results for the improved model are close to the
Mori–Tanaka interphase model except for certain special cases which shall
be discussed later.



1 Introduction C435

2 The Mori–Tanaka interphase model

In this section we a model for the shear modulus of a composite with an in-
homogeneous interphase is derived. The shear modulus of a two phase com-
posite containing isotropic spherical inclusions surrounded by an isotropic
matrix, as given by the Mori–Tanaka method, is

µ = µm + c

[
1

µp − µm

+
6

5

(1− c)(κm + 2µm)

µm(3κm + 4µm)

]−1

, (1)

where c is the volume fraction of the inclusions, µp is the shear modulus of
the inclusion, and κm and µm are respectively the bulk and shear modulus
of the matrix.

Consider an interphase region of finite size surrounding each inclusion as
in [5]. The properties of the interphase are assumed to vary as a function
of the radial distance from the centre of the inclusion. These functions are
again assumed to be smooth, bounded and continuous. The radius of the
inclusion is assumed to have length a and the thickness of the interphase
is (b− a).

The inclusion and interphase together are modeled as forming a new,
effective spherical particle of radius b. It shall also be assumed that the in-
clusions are well spaced apart and that the interphase regions do not overlap.
Note also that for the composite with inhomogeneous interphase, we denote
the volume fraction of inclusions relative to all phases by d0.

By splitting the interphase region into different layers or regions as in [5],
the particle and first layer of interphase is modeled as a new effective spherical
particle. Equation (1) is then re-applied using this new effective spherical
particle as the inclusion phase and the next layer of interphase as being
equivalent to the matrix phase. This technique is known as the replacement
method and was proposed by Qiu & Weng [6] and Hashin [7]. Equation (1)
may be re-applied over and over until all the layers have been used.
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The interphase region may be split into n concentric layers causing a
partition P of [a, b] into n subintervals [5]. The lengths of these subintervals
need not be the same and any point within each subinterval given by ξi ∈
[xi−1, xi] may be chosen, where x represents the radial distance from the
centre of the inclusion. Then everything proceeds here analogously to the
bulk modulus case [5].

The effective shear modulus µi of the particle up to the ith layer is ap-
proximated by

µi = µ(ξi) + di

[
1

µi−1 − µ(ξi)
+

6

5

(1− di)(κ(ξi) + 2µ(ξi))

µ(ξi)(3κ(ξi) + 4µ(ξi))

]−1

, (2)

where di = (xi−1/xi)
3 , 1 ≤ i ≤ n , ξi ∈ [xi−1, xi] and µp = µ0 . κ(x) and µ(x)

are functions describing the properties of the interphase region such that
x ∈ [a, b] and µi−1 is an approximation to the shear modulus of the inner
composite sphere.

The aim is to find the effective shear modulus, µE, of the inclusion and
whole interphase region:

µE = lim
n→∞

µn ,

where µn is found by solving the recurrence relation (2).

The effective shear modulus of the inclusion and interphase is

µE =
µ0S(b) + T (b)

µ0U(b) + V (b)
. (3)

where S(x) and U(x) are the solutions of a pair of coupled first order linear
differential equations:

S ′(x) = − 3

5x

(
9κ(x) + 8µ(x)

3κ(x) + 4µ(x)

)
S(x) +

3µ(x)

5x

(
9κ(x) + 8µ(x)

3κ(x) + 4µ(x)

)
U(x) , (4)

U ′(x) =
18

5xµ(x)

(
κ(x) + 2µ(x)

3κ(x) + 4µ(x)

)
S(x)− 18

5x

(
κ(x) + 2µ(x)

3κ(x) + 4µ(x)

)
U(x) , (5)
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where S(a) = 1 , U(a) = 0 and x ∈ [a, b] . A detailed derivation of these
equations is given in [10].

The functions T (x) and V (x) are found by solving equations (4) and (5)
after replacing S with T and U with V , where T (a) = 0 , V (a) = 1 and
x ∈ [a, b] . Therefore, only one set of equations needs to be solved with
appropriate care taken when accounting for the boundary conditions.

The shear modulus of the composite can then easily be found by substi-
tuting µp = µE in equation (1) and letting c = d0b

3/a3 .

3 The improved model

3.1 A reverse particle mapping

The above results represent a mapping of an inclusion with a surrounding
interphase onto an effective homogeneous particle with different size and
properties to the original inclusion. Therefore, other micromechanics models
which have an explicit solution for the shear modulus may be incorporated
into the present results. For example, in the Generalised Self Consistent
Scheme, the shear modulus is given by the solution of a quadratic equa-
tion [4]. This result is useful in that it enables us to test the effect of the
inhomogeneous region using other micromechanics models. This was the ap-
proach used recently by Shen & Li [1] who checked their results against finite
element computations. It was found that their model was rather accurate
when the properties of the interphase vary between those of particle/fibre
and matrix but was unsatisfactory when the interphase was much harder
than both particle/fibre and matrix, and the matrix was harder than the
inclusion.

The gsc method of Christensen & Lo [4] gives the exact solution to
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the two phase shear problem whereas the Mori–Tanaka solution is only an
approximation and consequently there is an error in the current method.

Wang & Jasiuk [9] solved the shear modulus problem exactly for the power
law profile using the gsc method by solving a partial differential equation
for the displacement of the material that is subjected to shear strain at
infinity. Use of this approach for other profiles may be problematic due to
the complexity of the partial differential equation governing the displacement.

An alternative approach is therefore proposed where the results of Theo-
caris [8] are utilised. Theocaris [8] derives the shear modulus of a particulate
composite with homogeneous interphase using the gsc method of Chris-
tensen & Lo [4].

In order to estimate the shear property of the interphase a reverse map-
ping of the homogeneous properties of the effective particle consisting of
inclusion and interphase onto a two phase composite is utilised as shown in
Figure 1. Note that perfect bonding is assumed to exist between the phases.
This can be achieved by solving the following two simultaneous equations for
κi and µi:

κE = κi +
a3

b3

[
1

κp − κi

+
3(1− a3

b3
)

3κi + 4µi

]−1

and µE = µi +
a3

b3

[
1

µp − µi

+
6

5

(1− a3

b3
)(κi + 2µi)

µi(3κi + 4µi)

]−1

,

where the subscript i denotes the interphase. Note that κE and µE are given
by [5] and (3) respectively. The solution to these two simultaneous equations
gives only one physically realistic solution, that is κi > 0 and µi > 0 . The
remaining solutions may be discarded.

Therefore, by utilizing the above values for κi and µi and then solving
the shear problem with a homogeneous interphase using the gsc method, an
improvement in the accuracy of the results should be achieved.
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Figure 1: A mapping of a homogeneous particle consisting of inclusion and
interphase onto a two phase composite.

3.2 The GSC method with a homogeneous interphase

In the original model, a composite sphere or cylinder consisting of the inclu-
sion and a concentric shell with the property of the matrix, is embedded in
a surrounding material which has the unknown properties of the composite
material. Theocaris [8] extended this model by incorporating a homogeneous
interphase region surrounding the inclusion. A detailed description of this
method is also given by Lombardo [10].

Everything proceeds similarly to the case where no interphase region is
present [4]. The solution involves solving the equations of equilibrium in
each of the homogeneous phases when the composite is subjected to shear
strain at infinity. The unknowns which appear in these solutions are found
by ensuring continuity of stresses and displacements at each interface. A
result obtained by Eshelby [11] is also used to eliminate one of the unknown
constants. The solution to the remaining unknown constants is found by
solving a 12× 12 matrix system as opposed to an 8× 8 matrix system that
occurs when the interphase is neglected [4].
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4 Results

To check whether the model is satisfactory, a simple power law function as
in [5] is considered. Shen & Li concluded in their work that their model for
the shear modulus was not satisfactory when the interphase is much harder
than the matrix and the particle inclusion, and the inclusion softer than
the matrix. Since their model, like the current model, is based on the Mori–
Tanaka solution for the shear modulus, the present model will reflect the same
behaviour. However, it is worthwhile for such cases to consider the behaviour
of the improved model which employs the generalised self consistent method.

A comparison between the improved model and the Mori–Tanaka inter-
phase model is shown below by considering the following variations in the
interphase properties given in Figures 2 and 3. The material properties used
were κm = 22 , µm = 11 , κp = 14 and µp = 3 and the interphase region
was assumed to have a thickness of 25% of the radius of inclusion. Also,
various values of J (an interphase parameter which measures the modulus
at the surface of the inclusion relative to the modulus of the matrix), were
chosen such that the interphase properties are harder than both inclusion
and matrix, a similar case considered in the work of Shen & Li [1].

For such an interphase profile the shear modulus as a function of inclusion
concentration using the Mori–Tanaka interphase model and the improved
model are plotted and are given respectively in Figures 4 and 5.

Figures 4 and 5 show that the larger the value of J , the greater the vari-
ation in the Mori–Tanaka interphase model and the improved model. This
behaviour is also reflected in the work of Shen & Li [1] who used a damage
parameter to change the properties of the interphase region. This damage
parameter is analogous to the parameter J . They measured the change in
the strain energy based on the present model to finite element computations.
For the shear modulus, they showed that the larger the damage parameter,
the smaller the error in the strain energy between the present method and
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Figure 2: The bulk modulus as a function of the radial distance, x.
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Figure 3: The shear modulus as a function of the radial distance, x.
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Figure 4: The relative shear modulus of a composite as a function of in-
clusion concentration for various values of J , plotted using the Mori–Tanaka
interphase model.
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Figure 5: The relative shear modulus of a composite as a function of inclu-
sion concentration for various values of J , plotted using the improved gsc
homogeneous model.

the finite element computations, a behaviour that is reflected in the current
work.

5 Conclusion

An approximation was obtained to the shear modulus of a particulate com-
posite with an inhomogeneous interphase using a result obtain by Weng [2]
for a two phase composite based on the Mori–Tanaka method. As in the
bulk modulus case, an exact solution for the effective shear modulus of the
inclusion and interphase using power law profile was obtained from a coupled
pair of differential equations. To account for the fact that the Mori–Tanaka
solution is not exact, the generalised self consistent method of Christensen
and Lo [4] was employed. This was achieved by doing a reverse mapping of
the homogeneous particle consisting of inclusion and interphase back onto
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a two phase composite. Such a mapping made it possible to estimate the
equivalent homogeneous property of the interphase. The gsc method was
then modified to account for this homogeneous interphase region surround-
ing the inclusion. The accuracy of the improved model seems to depend on
how good the estimate is of the equivalent homogeneous properties of the
interphase since the method is exact after these properties are known. It is
not known how accurate the method is that we use to measure the equivalent
homogeneous properties of the interphase. However, the results reflect the
behaviour that is expected. That is, when the properties of the interphase
vary between inclusion and matrix, then the difference between both models
is small or hardly perceived. However, when the inclusion is softer than the
matrix and the interphase is harder than both, then the results show a clear
difference between both models, a result that is reflected in the work of Shen
& Li [1].
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