
ANZIAM J. 47 (EMAC2005) pp.C462–C474, 2006 C462

A dynamical systems model for fireline growth
with suppression
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Abstract

An elementary dynamical systems model for fireline growth is pre-
sented. It includes the effect of suppression applied from a set time
after the start of the fire. Criteria for the likely success of the con-
tainment activities are derived from the model.
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1 Introduction

There has been a long history of wildland fire spread modelling, most recently
reviewed by Pastor et al. [4] and including models that have attempted to
include chemical kinetics in a fundamental way, such as the paper by Assen-
sio and Ferragut [3]. A few of the models attempted to include the effects
of suppression on fire growth and the eventual fire size; for example, Ander-
son [1]. We introduce a dynamical systems model as an alternative way of
considering and modelling fireline growth when there is active suppression
applied from a set time after the fire was initiated. The intention is to use
the mathematical framework of dynamical systems to illustrate a new way
of describing the effect of fire suppression activities on the fireline and to
develop criteria for the likely outcome of containment activities.
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It is anticipated that each component of the present model could be re-
fined to account for more details of actual situations and that the result could
then form a simulation module within fire incident management systems.

2 Fireline growth without suppression

Consider first the simpler example of fireline growth from a point ignition
and without suppression.

Let the fireline at any time t have length L(t). The requirement of point
ignition means that L(0) = 0 and the fireline should increase in length for
all t > 0 . A useful first formulation for fireline growth is

dL

dt
=

α

Lε
(1)

with α is a constant of proportionality and ε is an exponent which we need
to determine. After some elementary integration and matching of the initial
condition L(0) = 0 , we see that the exponent ε needs to be greater than
minus one for a sensible model which correctly reflects that the fire starts at
a point and grows in time. The simplest case is when ε = 1 and we shall use
this as our basic model throughout the rest of this paper.

To summarise, we select the model

dL

dt
=

α

L
, (2)

with α a constant of proportionality, initial condition L(0) = 0 and solution
for fireline growth L(t) =

√
2αt , valid for all t > 0 .

Note that the area of the fire scales approximately as the square of the
fireline, and that with ε = 1 this results in a fire area that grows linearly
with time.
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Incidentally, there is a link with this and the many mean curvature models
for the growth of assorted physical, chemical and biological fronts; see for
example the many examples by Pelcé [5]. This is also relevant in the context
of previous geometrical models for wildland fire growth such as the ellipse
model of Anderson et al. [2].

3 Fireline growth with suppression

Building upon the previous model without suppression, we now present a
formulation where the natural processes of fire growth and the application of
fire control strategies interact. The simplest example of a dynamical system
which incorporates the model from the previous section for natural fireline
growth and the assumptions that

• suppression reduces fireline growth (−βS),

• fixed resources are available for suppression (Q),

• suppression efficacy is diminished by fireline growth (−γL),

is

dL

dt
=

α

L
− βS ,

dS

dt
= Q(t)− γL , (3)

Here L(t) is the length of active fireline at a time t, S(t) is the length of
suppressed fireline at a time t, and α, β and γ are constants in the model.
Q(t) is a quantifiable expression for all of the suppression resources applied
at time t.
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Figure 1: Schematic of a growing fireline at times t = 0, 1 and 2, showing
active part, L, and suppressed part, S, at each time.

4 Initial conditions

We envisage that the starting situation is a point ignition at t = 0 , and that
there is no suppression activity until a time tS. Hence, the fireline grows
just as in the previous section for time t where 0 ≤ t ≤ tS . This means
that the fireline will reach a finite, non-zero size before suppression activities
commence. At this time, the length of suppressed fireline is zero (that is,
S = 0 at t = tS) and the model above, governing equation (3), is begun.

This is equivalent to assuming that the model (3) is started with L = LS

and S = 0 at t = tS . We then analyse the expected behaviour in our model
and try to predict the success of the suppression activity. Figure 1 is a
schematic of a growing fireline with suppression applied, showing increasing
active and suppressed parts at successive times.



4 Initial conditions C467

5 Behaviour in the phase plane

Henceforth we assume that the available suppression resources are constant;
that is, Q is in dependent of time. There is only one critical point, found by
setting

dL

dt
= 0 and

dS

dt
= 0 ,

which gives the simultaneous equations

α

L
− βS = 0 ,

Q− γL = 0 .

The critical point is then (L, S) = (Q/γ, αγ/(βQ)).

The nature of this sole critical point is determined by examining the be-
haviour in a neighbourhood of the critical point; we find that it is a saddle.
To illustrate the behaviour of the system we examine the numerically de-
termined phase plane of a representative example shown in Figure 2. The
saddle point is denoted by an open circle. The dashed bold arrows refer to
the manifolds of the saddle points (the stable manifolds are denoted by the
arrows pointing towards the saddle point, whereas the unstable manifold is
denoted by the arrows pointing away from this critical point). The phase
plane plot shows the path within the (L, S) plane of the fireline growth sup-
pression model as it evolves in time according to the governing equations (3),
for four initial conditions. The trajectories are labelled accordingly in the
figure. As in the previous section the initial condition for this model is a
nonzero value for the active fireline and a zero value for the suppressed fire
line (that is, no suppression at the beginning). There are then three different
types of behaviour depending on the values of these initial conditions, as
determined from the phase plane in Figure 2.

Initial conditions between (0, 0) and (Lcr1, 0) Examining the behaviour
of the trajectory labelled (1) with initial values (30, 0), we see that initially
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Figure 2: Phase-plane plot for the fireline growth and suppression model
with α = 11 , β = 0.001 , γ = 0.01 and Q = 1.1 .
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Figure 3: Shows the timeplots of the trajectories from Figure 2. (a) shows
the time evolution of Trajectory (1) from Figure 2 whose initial condition
is (L, S) = (30, 0), and (b) shows the time evolution of Trajectory (2) from
Figure 2 whose initial condition is (L, S) = (60, 0). Both curves show that
the active fireline reduces to zero in the long term. Similar behaviour is seen
for any initial condition between (L, S) = (0, 0) and (L, S) = (Lcr1, 0).
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the active fireline increases. However, in the long term, the active fireline
reduces to zero. This can be seen clearly in the timeplots of Figure 3(a).
Similar behaviour can be seen for Trajectory (2) in Figure 2; that is, for initial
condition (L, S) = (60, 0). All initial conditions in this region behaves in a
manner similar to that described above; that is, the active fireline increases
initially, but in the long term the active fireline reduces to zero. In other
words, sufficient resources were available to successfully suppress the active
fireline.

Initial conditions between (Lcr1, 0) and(Lcr2, 0) Trajectories (3) and (4)
in the phase plane (Figure 2) illustrate the behaviour for initial conditions
in this region. The corresponding timeplots are shown in Figure 4. See that
initially the suppressed fireline increases, but later it goes to zero, which
results in the entire fireline being active. Running the model beyond this
time results in the suppressed fireline becoming negative, and the model (3)
ceases to be physically meaningful. Hence for initial conditions in this region,
the available resources to fight the fire only appear, at the beginning, to be
sufficient to control the active fireline (with the increase in suppressed fireline)
but soon the entire fireline becomes active.

Initial conditions beyond (Lcr2, 0) For initial conditions in this region,
the resources available to fight the fire are not sufficient to cause any suppres-
sion whatsoever. From the unstable manifold, we clearly see that running
the model will result in negative suppressed fireline and hence the model is
not physically meaningful.
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Figure 4: Shows the timeplots of the trajectories from Figure 2. (a) shows
the time evolution of Trajectory (3) whose initial condition is (L, S) = (75, 0),
whereas (b) shows the time evolution of Trajectory (4) whose initial condition
is (L, S) = (90, 0). Both curves show that the suppressed fireline reduces to
zero. Similar behaviour is seen for any initial condition between (L, S) =
(Lcr1, 0) and (L, S) = (Lcr2, 0).
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6 Success criteria

For initial active fireline L0, see from the equation

dS

dt
= Q− γL ,

that the relationship Q = γL0 is critical and hence we have the crude esti-
mates that

• L0 > Q/γ means that the initial active fireline is beyond the capability
of the suppression resources, whereas

• L0 < Q/γ means that suppression could be effective and the model
needs to be run to ascertain the likely outcome.

From the phase plane portrait, Lcr1 is a far superior value to use as an
indicator of likely success. A linearised analysis could be used to calculate
the eigenvectors and provide an approximate formula for Lcr1; however, in
practice it is just as easy to numerically solve the model for any given set of
parameters and determine Lcr1 precisely.

7 Discussion

It is quite clear from the phase plane and associated time histories depicted in
Figures 2–4 that there is a dynamical interplay between the intrinsic growth
of the fireline and the applied suppression activities. The precise determi-
nation of the critical threshold for the success of the suppression activities
is not possible analytically, but needs to be determined numerically as in
our representative example. Interestingly, note that the model provides a
method for quantifying the length of time for which suppression must be
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applied in order for it to result in a successful outcome. With a more precise
calibration of the model this could be tested in the field in conjunction with
land management agencies in the hope of assisting in the improved planning
of suppression activities.

8 Conclusion

We have shown that it is possible to formulate a dynamical systems model
which encapsulates the basic elements of fire growth prior to suppression
and the subsequent effects of applied suppression. The application to actual
fire situations will be the topic of a further investigation and will enable a
determination of parameter values that accurately represent the rate of fire-
line growth, the suppression resources, and the coefficients describing the
interaction between fire size and suppression efficacy. This may result in fur-
ther revision and extension of the model to include hitherto ignored aspects,
such as the result of long-time ongoing fire suppression activities and the
introduction of aerial support.
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