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The two-dimensional, finite, gas lubricated,
slider bearing in slip flow

E. Aliu∗ J. J. Shepherd†

(Received 18 December 2005; revised 14 August 2006)

Abstract

Consider the pressure field in a two dimensional, finite, gas lubri-
cated, slider bearing under so-called ‘slip flow’ conditions; that is, the
bearing gap clearance is comparable to the mean free path distance of
the lubricant gas in the bearing. In such cases, a modified Reynolds
equation determines the pressure. For high speed flow and a large
breadth to width ratio, the resulting boundary value problem for the
pressure involves two large parameters and is a singular perturbation
problem in the infinite limit of these quantities. Analysis by pertur-
bation techniques yields an approximate expression for the pressure
throughout the bearing, displaying side and trailing edge boundary
layers. The results of using this expression are compared with those
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obtained from application of a commercial finite element computer
package.
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1 Introduction

The bearing geometry is shown in Figure 1, with the X- and Z-axes in the
plane of the moving surface, the X-axis in the direction of relative motion,
and the Y -axis perpendicular to the base plane.

The upper surface, Y = H(X, Z), for a given positive function H, is
stationary, while the lower surface, (the XZ-plane), has constant velocity U
in the positive X direction.

Under the assumptions of isothermal slip flow (that is, when the bearing
gap is comparable in dimension to the mean free path distance of the gas lu-
bricant), and with dimensionless variables p, h, x and z defined by P = Pap ,
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Figure 1: Finite bearing geometry.

H = H0h , X = Lx , Z = BLz , the task of determining the dimensionless
pressure p in the bearing reduces to solving the nonlinear equation

Λ−1 ∂

∂x

[
h3p

(
1 +

6k

hp

)
∂p

∂x

]
+ B−2Λ−1 ∂

∂z

[
h3p

(
1 +

6k

hp

)
∂p

∂z

]
=

∂

∂x
(hp) , (1)

on 0 < x < 1 , −1/2 < z < 1/2 , subject to the boundary conditions

p(x,±1/2, Λ, B, k) = 1 , 0 ≤ x ≤ 1 , (2)

p(0, z, Λ, B, k) = p(1, z, Λ, B, k) = 1 , −1/2 ≤ z ≤ 1/2 . (3)

Equation (1) is a modification of the Reynolds equation [4], derived by
Burgdorfer [3] to deal with the slip flow occurring in the bearing gap un-
der rarefied gas conditions. The dimensionless parameters are the bearing
number Λ (associated with the flow speed, characterized by U); the Knud-
sen number k (associated with the degree of slip in the flow—thus k = 0
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signifies zero slip); and the breadth ratio B (giving the ratio of bearing width
to depth). Pa is the pressure external to the bearing, assumed constant.
Thus the boundary conditions (2) and (3) signify the pressure returning to
ambient at the boundaries. H0 is a characteristic (constant) value of the
function H(X, Z).

2 Perturbation analysis

The finite but wide high speed isothermal gas slider bearing in slip flow is
typified by the conditions

B � 1 , Λ � 1 , k ≈ O(1).

Thus a perturbation analysis of the problem (1), (2) and (3) based on the
limits B → ∞ , Λ → ∞ for given O(1) values of k is indicated. Since two
large parameters are involved, B and Λ, and since, in the most general situ-
ation, they may become infinitely large independently, we place a restriction
on the limiting process. Thus, we assume that, as B, Λ →∞ ,

B2Λ−1 → 0 ; (4)

that is, B−2 → 0 more slowly than Λ−1. This fits in well with realistic values
for practical applications; for example, B ≈ 10 , Λ ≈ 100–2000 , and allows
construction of a useful approximate expression for the pressure field.

The reduced equation, obtained by setting B = Λ = ∞ in (1), is first
order in x; and thus can meet only one of the boundary conditions (3) (and
neither of (2)). Thus, the problem (1), (2) and (3) is a singular perturbation
problem as Λ, B →∞ ; and appropriate methods of analysis are needed.

Early calculations [2] indicate that the solution of the reduced equation
satisfies the boundary condition at x = 0 ; but not the boundary conditions
at the trailing edge x = 1 and the side edges z = ±1

2
. At these edges, local
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Figure 2: Asymptotic regions for the finite bearing .

boundary layers occur, where the pressure corrects rapidly from the solution
of the reduced equation to the prescribed boundary conditions. To analyze
these layer solutions, local variables are introduced, and the limit Λ, B →∞
considered in terms of these variables. Standard arguments [5, 6] give the
boundary layer thickness at the trailing edge x = 1 to be O(Λ−1); whereas
the side boundary layers at the edges z = −1

2
and z = 1

2
are of thickness

O(B−1Λ−1/2) as Λ, B →∞ .

Perturbation techniques are applied separately in the different sub-regions
of the bearing, as shown in Figure 2. The pressure field in Region 1 will be
governed by an expansion away from the side boundary layers that incorpo-
rate the trailing edge boundary layer adjacent to x = 1 ; whereas in Regions 2
and 3, the analysis includes the side boundary layers adjacent to z = −1

2
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and z = 1
2

respectively. The findings of Aliu [1] for the one-dimensional
case, where the Method of Multiple Scales provided a more accurate approx-
imation than that generated by Matched Expansions, supports an analysis
paralleling that of Aliu [1] away from side layers, so that, in Region 1, the
problem is analyzed by the Method of Multiple Scales. However, side layer
solutions, in Regions 2 and 3, are constructed using the Method of Matched
Expansions and linked to the Multiple Scales solution in Region 1 by the
standard matching process.

3 Trailing edge layer: analysis in Region 1

By analogy with [1], the pressure field in this region, namely p(x, z, Λ, B) =
p1(x, z, Λ, B) is viewed as depending on the “slow” variables x and z, as well
as the “fast” variable ξ, where

ξ = (1− g(x, z))Λ . (5)

The function g is to be positive, with other properties as required for the
subsequent analysis.

A multiscaling approach argues that the solution of (1) in Region 1 may
be viewed as a function P1(x, z, ξ, Λ, B) of the three variables x, z and ξ,
with Λ and B as parameters.

Equation (1) transforms to the partial differential equation for P1,

Λ−2 ∂

∂x
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h2 (hP1 + 6k)

∂P1
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]
− Λ−1 ∂

∂x

[
h2gx (hP1 + 6k)

∂P1

∂ξ

]
− Λ−1 ∂

∂ξ

[
h2gx (hP1 + 6k)

∂P1
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]
+ h2g2

x

∂

∂ξ

[
(hP1 + 6k)

∂P1

∂ξ

]
+ Λ−2B−2 ∂

∂z

[
h2 (hP1 + 6k)

∂P1

∂z

]
− Λ−1B−2 ∂

∂z

[
h2gz (hP1 + 6k)

∂P1
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]
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− Λ−1B−2 ∂

∂ξ

[
h2gz (hP1 + 6k)

∂P1

∂z

]
+ B−2g2

zh
2 ∂

∂ξ

[
(hP1 + 6k)

∂P1

∂ξ

]
= Λ−1 ∂

∂x
(hP1)− hgx

∂P1

∂ξ
, (6)

where subscripts denote partial derivatives. Equation (6) is the multiscaled
form of Equation (1). In (6), the function h is to be regarded as depending
on the “slow” variables x and z only; and (6) is assumed valid, not only on
0 ≤ x ≤ 1 , −1/2 < z < 1/2 , but also on 0 ≤ ξ < ∞ . In view of (4), it is
assumed that P1 has an expansion of the form

P1(x, z, ξ, Λ, B) = P10(x, z, ξ) + B−2P11(x, z, ξ, B) + Λ−1P12(x, z, ξ) + · · · . (7)

The form (7) is dictated by the gauge functions displayed in (6) (powers and
products of Λ−1 and B−2). Note that (7) is not of Poincaré form since the
second term (in which P11 depends on B) might be expected to incorporate
all terms involving powers of B−2 that are lower order than O(Λ−1).

For the expansion (7), the usual multiple scaling boundedness criterion is
to be interpreted as the requirement that the ratios P11/P10, P12/P10, P12/P11

all be bounded for small B−2 and Λ−1 uniformly with respect to 0 ≤ x ≤ 1 ,
−1/2 ≤ z ≤ 1/2 , and 0 ≤ ξ < ∞ .

Substitution of (7) into (6) and equating like orders to zero yields a se-
quence of partial differential equations for P10, P11, P12, . . . .

The O(1) terms give the nonlinear equation

h2g2
x

∂

∂ξ

[
(hP10 + 6k)

∂P10

∂ξ

]
+ hgx

∂P10

∂ξ
= 0 ; (8)

the O(B−2) term gives the linear equation

L[P11] ≡ h3g2
x

∂2

∂ξ2

[(
P10 +

6k

h

)
P11

]
+ hgx

∂P11

∂ξ
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= −h3g2
z

∂

∂ξ

[(
P10 +

6k

h

)
∂P10

∂ξ

]
; (9)

whereas the O(Λ−1) terms give

L[P12] =
∂

∂x
(hP10) +

∂

∂x

[
h3gx

(
P10 +

6k

h

)
∂P10

∂ξ

]
+

∂

∂ξ

[
h3gx

(
P10 +

6k

h

)
∂P10

∂x

]
. (10)

Integration of (8) gives the general solution P10(x, z, ξ) implicitly in the form

P10(x, z, ξ) +

[
F (x, z) +

6k

h(x, z)

]
ln [F (x, z)− P10(x, z, ξ)]

= − ξ

h2gx

+ G(x, z) , (11)

with F and G functions of x and z alone. We assume that F (x, z) and G(x, z)
are continuously differentiable with respect to their arguments, and that
F (x, z) and gx(x, z) may be chosen to be positive functions on 0 ≤ x ≤ 1 ,
−1/2 ≤ z ≤ 1/2 , whereas F (x, z)− P10(x, z, ξ) 6= 0 for all ξ on 0 ≤ ξ ≤ ∞ .
Thus, all quantities in (11) are defined.

Now, (11) may be rearranged as

F (x, z)− P10(x, z, ξ) = exp θ , (12)

where

θ(x, z, ξ) =
h(G− P10 − gxξ)

hF + 6k
. (13)

Equations (12) and (13) show that, under the assumptions about g and F ,
P10 as defined by (11) has the property that P10(x, z, ξ) → F (x, z) monoton-
ically as ξ →∞ , for all 0 ≤ x ≤ 1 , −1/2 ≤ z ≤ 1/2 and k ≥ 0 .



3 Trailing edge layer: analysis in Region 1 C483

Applying the representation (12) for P10 gives Equation (10) for P12 in
the form

L[P12] =
∂

∂x
(Fh) + eθ

(
1− h

Fh + 6k
eθ

)−1

{
h

∂

∂x

[
h(G− F )

Fh + 6k

]
− h

∂

∂x

[
1

hgx(Fh + 6k)

]
ξ + h

∂

∂x

[
1

Fh + 6k

]
− 6kh

Fh + 6k
hx + h

[
hx

Fh + 6k
+

∂

∂x

(
h

Fh + 6k

)]
eθ

}
. (14)

For large ξ, P10 ≈ F (x, z), and the linear differential operator L, Equa-
tion (14) is transformed into

L[P12] ≈ h2g2
x(Fh + 6k)

∂2P12

∂ξ2
+ hgx

∂P12

∂ξ
.

This implies that the component of P12 arising from the right-hand side
of (14) will contain terms causing the ratio P12/P10 to become unbounded as
ξ →∞ , unless the functions F , G and g are chosen to satisfy the equations

∂

∂x
(Fh) = 0 ,

∂

∂x

[
1

hgx(Fh + 6k)

]
= 0 , (15)

and

h
∂

∂x

[
h(G− F )

hF + 6k

]
+ h

∂

∂x

[
h

hF + 6k

]
− 6kh

hF + 6k
hx = 0 . (16)

Solving Equations (15) and (16) gives

F (x, z) =
K1(z)

h(x, z)
,

g(x, z) =

∫ x

0
h(t, z)−1 dt∫ 1

0
h(t, z)−1 dt

,

G(x, z) =
K2(z)− 6k ln h(x, z)

h(x, z)
,
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where K1(z) and K2(z) are arbitrary functions of z alone. This converts
Equation (11) to

P10 +
K1 + 6k

h
ln

[
K1

h
− P10

]
= −

Λ
∫ 1

x
h(t, z)−1 dt

h
+

K2 − 6k ln h

h
. (17)

Applying the boundary condition at x = 1 to P10 gives

K2(z) = h(1, z) + (K1 + 6k) ln

[
K1

h(1, z)
− 1

]
+ 6k ln h(1, z) . (18)

The boundary condition at x = 0 and (17) shows that to leading order in
small Λ−1, K1 = h(0, z). Equation (18) then gives K2(z).

Thus, a leading order approximation to the pressure throughout the whole
of Region 1 is given by p10(x, z, Λ), defined implicitly by

p10(x, z, Λ) +
h(0, z) + 6k

h(x, z)
ln

∣∣∣∣∣
h(0,z)
h(x,z)

− p10(x, z, Λ)

h(0,z)
h(1,z)

− 1

∣∣∣∣∣
=

h(1, z)

h(x, z)
+

6k

h(x, z)
ln

(
h(1, z)

h(x, z)

)
−

Λ
∫ 1

x
h(t, z)−1 dt

h(x, z)
. (19)

Note that p10(x, 1/2, Λ) 6= 1 ; that is, the boundary condition at the edge
z = 1/2 is not attained. The correction required to achieve this is to be found
in the O(B−1Λ−1/2) side layer mentioned earlier. A similar observation holds
at the edge z = −1/2 .

4 Side layers: analysis in Regions 2 and 3

Near the edge z = −1/2 , that is, in Region 3, the stretching transformation

η = (
1

2
+ z)BΛ1/2 , (20)
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is applied to Equation (1). This yields the partial differential equation for
P3(x, z, η, Λ), the pressure in Region 3, as

Λ−1 ∂

∂x

[
h3P3

(
1 +

6k

hP3

)
∂P3

∂x

]
+

∂

∂η

[
h3P3

(
1 +

6k

hP3

)
∂P3

∂η

]
=

∂

∂x
(hP3) . (21)

From the leading order terms of (21), the differential equation determining
P30(x, z, ξ, η), the leading order approximation to P3, is

∂

∂η

[
h3(x,−1

2
)

(
P30 +

6k

h(x,−1
2
)

)
∂P30

∂η

]
=

∂

∂x

[
h(x,−1

2
)P30

]
. (22)

Equation (22) may be solved by the method of invariances to a leading order
approximation (as the exact solution will not satisfy the boundary conditions
along z = −1/2).

Thus, a leading order approximation to the pressure in Region 3 is given
by p30(x, z, Λ, B), defined implicitly by

p30 +

(
1 +

6k

h(0,−1
2
)

)
ln

∣∣∣∣h(0,−1
2
)− h(x,−1

2
)p30

h(0,−1
2
)− h(x,−1

2
)

∣∣∣∣ = −
(1

2
+ z)BΛ1/2

h(0,−1
2
)

+ 1 .

(23)
Note that p30 = 1 when z = −1/2 for all x. Further, for points outside
the layer at z = −1/2 , p30 → h(0,−1/2)/h(x,−1/2) as BΛ1/2 → ∞ ; that
is, the value of p10 locally outside the trailing edge layer at x = 1 . The
only discrepancy occurs within both the trailing (x = 1) layer and the side
(z = −1/2) layer, where it displays an exponential exp[−(z + 1/2)ΛB1/2]
type structure.

Similarly, the leading order approximation to the pressure in Region 2 is
given by p20(x, z, Λ, B), defined implicitly by

p20 +

(
1 +

6k

h(0, 1
2
)

)
ln

∣∣∣∣h(0, 1
2
)− h(x, 1

2
)p20

h(0, 1
2
)− h(x, 1

2
)

∣∣∣∣ = −
(1

2
− z)BΛ1/2

h(0, 1
2
)

+ 1 . (24)
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5 Overall representation for the pressure

A leading order representation p0(x, z, Λ, B) for the pressure field over the
whole bearing may be obtained from the “sum minus common parts” rule as

p0(x, z, Λ, B) = p10(x, z, Λ, B) + p20(x, z, Λ, B) + p30(x, z, Λ, B)

−
h(0, 1

2
)

h(x, 1
2
)
−

h(0,−1
2
)

h(x,−1
2
)
, (25)

where p10, p20 and p30 are given by (19), (24) and (23) respectively. It is
important to investigate to what degree p0 represents the pressure over the
whole bearing region 0 ≤ x ≤ 1 , −1

2
≤ z ≤ 1

2
.

A rearrangement of (25) gives

p0(x, z, Λ, B) = p10 +

(
p20 −

h(0, 1
2
)

h(x, 1
2
)

)
+

(
p30 −

h(0,−1
2
)

h(x,−1
2
)

)
. (26)

Throughout Region 1, the second and third terms on the right side of (26)
are subject to estimates O

(
exp

[
− c(1

2
∓ z)BΛ1/2

])
respectively for some

c > 0 ; and thus are exponentially small as Λ, B →∞ for all z bounded away
from the side layers at z = 1

2
and z = −1

2
. Thus, in Region 1, p0(x, z, Λ, B) =

p10(x, z, Λ, B) to leading order as Λ →∞ , for all such z values.

Now, (25) may also be rearranged as

p0 = p20 +

(
p30 −

h(0,−1
2
)

h(x,−1
2
)

)
+

(
p10 −

h(0, 1
2
)

h(x, 1
2
)

)
. (27)

In the side layer at z = 1
2
, the second term on the right hand side of (27)

is exponentially small as Λ, B →∞ , while the third satisfies an estimate of
the form O

(
exp

[
− c(1− x)Λ

])
for some c > 0 independent of Λ. Thus, it is

small for all x bounded away from x = 1 ; that is, p0(x, z, Λ) = p20(x, z, Λ) to
leading order as Λ, B →∞ , in the side layer at z = 1

2
, and for all x outside

the trailing layer at x = 1 .
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Similar arguments show that p0(x, z, Λ) = p30(x, z, Λ) to leading order as
Λ, B →∞ in the side layer at z = −1

2
and for x bounded away from x = 1 .

If it is accepted that the approximations p10, p20 and p30 represent the
pressure field on their various sub domains (based as they are on equations
approximating the full equation (1) on these domains), then the above results
lead to the conclusion that p0(x, z, Λ, B), as defined by (25), represents the
pressure field in the bearing to leading order, except in neighbourhoods of
the corners at (x, z) = (1,±1/2), where p0 may differ from the pressure
by amounts that display a characteristic exponential decay away from the
boundaries x = 1 , z = ±1/2 .

6 Discussion

The expression (25) provides a convenient leading order approximation to the
pressure field over virtually all of the bearing region. The only exceptions are
the corner regions at (x, z) = (1,±1/2); and even then, the discrepancy is not
uniformly significant. These corner regions, at the intersections of the side
and trailing layers, are of dimensions O(Λ−1) × O(B−1Λ−1/2) as Λ → ∞ ,
B → ∞ . Thus, the integrated effect of the pressure over these regions is
O(B−1Λ−3/2) . This has implications for the load—the load bearing capacity
of the bearing, given by the integral of the pressure over the whole bearing
area. This is not calculated here [1].

While the component functions p10, p20 and p30 are given implicitly, their
evaluation and graphical representation poses no real difficulty. For each
(x, z) pair, the appropriate implicit equation may be solved numerically for
the corresponding p value, using a Newton–Raphson or similar elementary
procedure. The resulting (x, z, p) triplets may then be plotted using standard
software. For longitudinal or cross sections as presented here, the appropriate
p-x or p-z relationship may be plotted using a standard package such as
Maple’s implicitplot.
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Figure 3: Midline pressure distribution for h = 1− 0.5x , 6k = 1 , Λ ≈ 200 ,
B ≈ 2.9 , as approximated by (25) and pdease.
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Figure 4: Transverse pressure distribution at x = 0.8 for h = 1 − 0.5x ,
6k = 1 , Λ ≈ 200 , B ≈ 2.9 , as approximated by (25) and pdease.

Figure 3 compares the pressure profile along the bearing midline (z = 0)
for a linear profile, as computed using (25) with the results of a computa-
tion using the finite element package pdease. It is clear that the difference
between the two results is insignificant.

Figure 4 compares the results of using (25) with that of pdease for the
same linear profile for a section across the bearing at x = 0.8 . Again, the
agreement is very good, with, as expected, a small discrepancy in the side
layer at z = ±1/2 . Figure 5 shows a three-dimensional plot of the pressure
field as given by the approximate relation (25) over the whole bearing area.
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Figure 5: Pressure distribution for h = 1−0.5x , 6k = 1 , Λ ≈ 200 , B ≈ 2.9 ,
as approximated by (25).



6 Discussion C491

Both the trailing edge layer and side layers are clearly displayed.

In closing, note that the perturbation analysis above computed a leading
order approximation to the pressure throughout the bearing. Extension to
higher order terms would require computation of the O(B−2) and O(Λ−1)
terms in (7), and their corresponding corrections in the side layers. This is
well beyond the scope of the present paper, and is being investigated.
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