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Modelling electricity power cuts in the UK
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Abstract

We consider a compound Poisson model for electricity power cuts.
Cuts occur at rate λ and we associate with the ith cut a duration Li

and size Ci, where Li and Ci are heavy tailed and positively corre-
lated. Development of the model is complicated by the fact that we
have no direct observations of (Li, Ci). Rather, if N is the number of
power cuts in a year, we have observations of

∑N
i=1 CiLi and

∑N
i=1 Ci .

This necessitates the use of a parsimonious model for (Li, Ci), and we
base ours on the Pareto distribution. To fit the model we apply ker-
nel density estimation to simulated data to obtain estimates of the
likelihood, which we then maximise using stochastic optimisation.
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1 Introduction

In what follows we describe and fit a spatio-temporal model of power cuts in
the UK. A fundamental restriction on the modelling process is that the only
data available to fit the model is publicly available data provided by the UK
electricity supply regulator offer (Office of Electricity Regulation). Data
reported by offer is aggregated over large spatial and temporal regions, yet
we want to be able to use our model to simulate power cuts in detail. (offer
divides the UK into fourteen regions and reports annually.) Accordingly
we seek a parsimonious parametric model, which will necessarily make some
simplifying assumptions about the process of power cuts.

From a qualitative understanding of power cuts and an understanding
that, for the purposes of application, large power cuts are more important
than median power cuts, it was determined that the duration and area of
effect of a power cut should have heavy tailed distributions and that they
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Figure 1: A realisation of the power cut process. Each cylinder represents
a circular region affected by a power cut over a given period of time. Only
cuts of duration greater than 30 minutes are shown. The spatial axes have
been scaled to give one electricity customer per unit area.
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should be positively correlated.

In the absence of any evidence to the contrary, it was assumed that power
cuts occur over time according to a Poisson process with constant rate λ. It
is likely that λ has an annual period; however, we have no way of estimating
this and so ignore it. Individual power cuts are assumed to be independent
and the ith cut is described by a duration Li (in minutes) and size Ci (the
number of electricity customers affected). As noted already, we have no
direct observations of (Li, Ci). Rather, if N is the number of power cuts
in a year in a given geographical region and nc is the number of electricity
customers in the region, we have observations of A := n−1

c

∑N
i=1 CiLi and

B := n−1
c

∑N
i=1 Ci .

Given that a power cut has occurred, we assume that its location is ran-
domly distributed in space with a density proportional to the population
density of electricity customers over the given geographical region. That is,
the time and location of power cuts forms a spatio-temporal Poisson point
process, with spatial intensity proportional to the density of electricity cus-
tomers and constant temporal intensity λ. The UK population density can
be obtained from census data, and we assume that it is proportional to the
population density of electricity customers. Given the location of a power
cut, the area affected is taken to be a ball about that point with radius such
that the size Ci is the number of electricity users within the ball.

Our model for (Li, Ci) is based on the Pareto distribution. A full defi-
nition and some of its properties are given in Section 2. Figure 1 illustrates
the resulting power cut process.

A non-conventional approach was required to fit our power cut model.
The joint likelihood of the observed random variables A and B is not avail-
able analytically nor numerically; however, we can simulate them easily and
thence use kernel density estimation to obtain an estimate of the joint like-
lihood, for any given set of parameter values. We then maximise the like-
lihood using a version of the stochastic optimisation method of Kiefer &
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Wolfowitz [4]. Our approach is detailed in Section 3 together with the re-
sults of applying it to data from the region supplied by Eastern Electricity
between 1990 and 1998. A discussion of our results and some related work
is given in Section 4

2 The model

Our model is specified by the rate λ of power cuts and the joint distribution
of the size C and duration L of a single power cut. For strictly positive
parameters α, ρc, ρl, γc and γl we take

G ∼ Γ(α, 1) ,

X ∼ exp(G/ρc) ∼ Pareto(α, ρc) ,

Y ∼ exp(G/ρl) ∼ Pareto(α, ρl) ,

C = Xγc ,

L = Y γl ,

where X and Y are conditionally independent given G. Conditioning on G
one easily obtains

Pr(C > x, L > y) = (1 + ρ−1
c x1/γc + ρ−1

l y1/γl)−α ,

Pr(C > x) = (1 + ρ−1
c x1/γc)−α ,

Pr(L > y) = (1 + ρ−1
l y1/γl)−α .

Thus C and L have heavy tails of order α/γc and α/γl respectively.

We obtain a further appreciation of the role played by each parameter,
from the moments of C and L, when they exist. Again conditioning on G we
obtain, for any p, q > 0 such that α > pγc + qγl ,

ECpLq = ρc
pγcρl

qγlΓ(pγc + 1)Γ(qγl + 1)Γ(α− pγc − qγl)/Γ(α) .
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If α ≤ pγc + qγl , then the expectation is infinite. It follows that

EA = λρc
γcρl

γlΓ(γc + 1)Γ(γl + 1)Γ(α− γc − γl)/(ncΓ(α))

for α > γc + γl ,

Var A = λρc
2γcρl

2γlΓ(2γc + 1)Γ(2γl + 1)Γ(α− 2γc − 2γl)/(n
2
cΓ(α))

for α > 2γc + 2γl ,

EB = λρc
γcΓ(γc + 1)Γ(α− γc)/(ncΓ(α))

for α > γc ,

Var B = λρc
2γcΓ(2γc + 1)Γ(α− 2γc)/(n

2
cΓ(α))

for α > 2γc ,

Cov(A, B) = λρc
2γcρl

γlΓ(2γc + 1)Γ(γl + 1)Γ(α− 2γc − γl)/(n
2
cΓ(α))

for α > 2γc + γl .

For α, γc and γl outside the specified ranges these moments are infinite.

Alternatives exist to the bivariate Pareto distribution used for (X, Y ),
also with heavy tails and correlation, in particular the log skew t distribution
and multivariate stable distribution (Nolan [9] overviewed multivariate stable
distributions). An advantage of the Pareto is the particularly simple form
of its joint distribution and moments and the ease with which it can be
simulated. In all of these cases, the marginals for X and Y have the same
tail decay rate, and so to get different decay rates for the marginals one has
to introduce transformations of the form (C, L) = (Xγc , Y γl) , for example.

3 Model fitting

From offer publications [10, 11] we obtained observations of A (average
supply minutes lost per customer) and B (average supply interruptions per
customer) for 14 regions covering Britain, for the years 1990/91, . . . , 1997/98
(8 observations per region). More recent figures are published periodically
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and can be obtained from the offer website. We suppose that α, ρc, ρl,
γc and γl remain fixed over the 14 regions, but clearly λ will vary (as does nc,
which is known).

For the purpose of demonstrating our model fitting approach we consider
just the Eastern Electricity region, which covers East Anglia and parts of
Greater London, with nc = 3, 258, 000 customers. We have the following
observations

Year A B
1990/91 76 0.76
1991/92 65 0.68
1992/93 91 0.96
1993/94 63 0.59
1994/95 94 0.65
1995/96 85 0.85
1996/97 77 0.89
1997/98 70 0.74

Sample means, variances and covariances are ā = 77.63 , S2
A = 133.70 , b̄ =

0.765 , S2
B = 0.016086 and SA,B = 0.72929 .

Method of moments estimators for θ = (λ, α, ρc, ρl, γc, γl) require a solu-
tion of the non-linear system of equations EA = ā , EB = b̄ , Var A = S2

A ,
Var B = S2

B and Cov(A, B) = SA,B , subject to the constraints α > 2γc + 2γl

and θ > 0 . One can solve for ρc and ρl in terms of EA, EB and the other
parameters, leaving three equations in four unknowns. Exact expressions for
the other parameters are not readily obtainable, so we looked for a numerical
solution of the corresponding constrained least-squares problem. As we have
a free parameter we are able to simplify the constraint region by putting
α = 2γc +2γl + ε , where ε > 0 is fixed. Using a local search algorithm, every
attempt at finding a solution (by varying ε as well as the initial search po-
sition and step size) was unsuccessful and resulted in γc and γl heading to 0
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without the model variances converging to the sample variances. Given the
results of our maximum likelihood estimation below, a plausible explanation
for our inability to match moments is that Var A, Var B and Cov(A, B) are
infinite.

The exact joint likelihood of (A, B) is in practice unobtainable. Each
marginal is the mixture over possible values of N of an N -fold convolution
of a Pareto-like density, where typical values of N are of the order of 7,000 .
However it is very easy to simulate (A, B) and given this we can use kernel
density estimation (kde) to estimate the joint likelihood. Appendix A gives
sample code for simulating (A, B).

Given an i.i.d. sample X1, . . . ,Xk ∈ Rd , using a product form kernel, the
kde estimate of the density f at x ∈ Rd is

f̂(x) =
1

k

k∑
i=1

d∏
j=1

1

h(j)
K

(
x(j)−Xi(j)

h(j)

)
,

where K is the kernel, and h the bandwidth vector. Assume that for each j,
h(j) ∝ h for some h, then for any sensible choice of kernel (for example the
normal), if f has continuous second order derivatives and square integrable
third order derivatives, then we get that f̂ has bias O(h2) and variance
O(k−1h−d) [13]. Choosing h to minimise the Asymptotic Mean Integrated
Square Error (amise) of f̂ gives h ∝ k−1/(4+d) .

To estimate the log density we just use log f̂ . Let fh(x) = Ef̂(x) , then
expanding log u about u0 = fh(x) we have, at u = f̂(x) ,

log f̂(x)− log fh(x) =
f̂(x)− fh(x)

fh(x)
− (f̂(x)− fh(x))2

2fh(x)2
+ o((f̂(x)− fh(x))2).

Thus

E log f̂(x) = log fh(x) +O(k−1h−d) = log f(x) +O(h2) +O(k−1h−d) .
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Expanding (log u− log fh(x))2 about u0 = fh(x) we have, at u = f̂(x) ,(
log f̂(x)− log fh(x)

)2

= (f̂(x)− fh(x))2 + o((f̂(x)− fh(x))2) .

Thus

Var log f̂(x)

≤ E(log f̂(x)− log f(x))2

= E

(
log

f̂(x)

fh(x)

)2

+ 2

(
log

fh(x)

f(x)

)
E

(
log

f̂(x)

fh(x)

)
+

(
log

fh(x)

f(x)

)2

= O(k−1h−d) +O(k−1h2−d) +O(h4)

= O(k−1h−d) +O(h4) .

In applying kde we used code based on that of Beardah [1]. We used the
standard normal kernel.

3.1 Stochastic optimisation

Since A and B inherit skewed heavy tails from C and L, rather than apply
kde to the joint density fA,B of A and B, we apply it to the joint density
flog A,log B of log A and log B. The relationship between the two densities is

log fA,B(x, y) = log flog A,log B(log x, log y)− log x− log y .

The joint density flog A,log B is smooth enough for our kde estimates to con-
verge as above.

Let (ai, bi), i = 1, . . . ,m , be our observations of (A, B) then for θ =
(λ, γc, ρc, γl, ρl, α) > 0 our approximation of the log likelihood is

l̂(θ) =
m∑

i=1

(
log f̂log A,log B(log ai, log bi)− log ai − log bi

)
,
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where f̂log A,log B is our kde estimate, so that l̂ has bias O(k−1h−d) + O(h2)
and variance O(k−1h−d) +O(h4) , as the simulation sample size k →∞ and
kernel bandwidth h → 0 .

We maximise the log likelihood over θ using the stochastic optimisation
technique of Kiefer & Wolfowitz [4, 2]. Let θn be the nth candidate solution
then for non-negative sequences {an} and {cn} we have for j = 1, . . . , dθ = 6

θn+1(j) = θn(j) + an
l̂(θn + cnej)− l̂(θn − cnej)

2cn

= θn(j) + an(lj(θn) + βn(j) + ξn(j)) ,

where lj = ∂l/∂θ(j) , ej is the unit vector with jth coordinate equal to 1,
and the bias and error terms are

βn(j) =
l(θn + cnej)− l(θn − cnej)

2cn

− lj(θn)

+ E

(
l̂(θn + cnej)− l̂(θn − cnej)

2cn

)
− l(θn + cnej)− l(θn − cnej)

2cn

,

ξn(j) =
l̂(θn + cnej)− l̂(θn − cnej)

2cn

− E

(
l̂(θn + cnej)− l̂(θn − cnej)

2cn

)
.

In practice an and cn can be allowed to depend on j.

Since l is twice continuously differentiable, we have that θn converges
almost surely to a point of local maximum of l if the following conditions
hold [6]:

1.
∑

n an = ∞ and
∑

n a2
n < ∞ ;

2.
∑

a2
nc
−2
n < ∞ ;

3. For each j, E|ξn(j)|, c2
n Var ξn(j) and βn(j)2 are bounded in n.
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(More general conditions for convergence are given by Kushner & Yin [6], but
are not needed here.) Let hn be the bandwidth and kn the sample size used
to obtain the kde estimates l̂(θn ± cnej) . Taking an = n−1 and cn = n−δ

for 0 < δ < 0.5 satisfies Conditions 1 and 2. Choosing hn and kn to satisfy
Condition 3 and minimise kn we get, since E|ξn(j)| ≤ 1 + Var ξn(j) ,

βn(j)2 = O(k−2
n h−2d

n c−2
n ) +O(k−1

n h2−d
n c−2

n ) +O(h4
nc
−2
n ) = O(1) ,

Var ξn(j) = O(k−1
n h−d

n c−2
n ) +O(h4

nc
−2
n ) = O(1) ,

whence
kn ∝ n(2+d/2)δ and hn ∝ n−δ/2 ∝ k−1/(4+d)

n .

Note that this relation between hn and kn is the same as that given by
minimising the amise of f̂ .

Note that in practice the asymptotic requirements for an, cn, hn and kn,
which are needed to ensure that the algorithm eventually converges, are much
less important than their initial values and in practice they can usually be
kept constant.

The speed of convergence of the stochastic optimisation algorithm was
significantly improved by using the “common random numbers” variance
reduction technique [5]. That is, at each iteration the same sequence of
pseudo random numbers was used to generate l̂(θn ± cnej) for j = 1, . . . , dθ ,
which has the effect of reducing the variance of the ξn(j). Appendix A
indicates how to modify our simulation code to take advantage of common
random numbers.

3.2 Results

Having a small data set meant that the log likelihood l was very close to −∞
for most values of θ and quite flat for the remainder, so it was necessary to
take small step sizes. Also l is much more sensitive to changes in α, γc and γl

than to changes in ρc, ρl and λ, which necessitated a coordinate scaling of θ.
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An initial value θ0 was obtained by putting λ = 10, 000 (based on some
auxiliary information of poor quality), ρc = ρl = 1 , α = 3 and then solving
EA = ā and EB = b̄ to find γc and γl. From this point the stochastic
optimisation algorithm converged slowly but steadily. Our final values for
the components of θ were

λ̂ = 7, 122 , γ̂c = 1.9955 , ρ̂c = 16.71 ,
γ̂l = 0.6255 , ρ̂l = 838.60 , α̂ = 2.7730 .

This value of λ corresponds to approximately 20 power cuts per day across the
Eastern Electricity region (covering all of East Anglia and parts of London).
This is reasonable, bearing in mind that most of these are of short duration.
Under this model EA and EB are finite but Var A, Var B and Cov(A, B) are
not. We have EA = 271.50 and EB = 0.872 . These are the correct order
of magnitude, although EA is nearly four times greater than the observed ā.
The explanation is in the heavy tails of A: the observed sample does not
include any extreme values and thus ā gives an underestimate of EA.

Having obtained θ̂, we use log f̂ to estimate the Fisher information ma-
trix. We approximated the second order partial derivatives of log f̂ using
differences, where common random numbers were used to estimate log f̂ for
different values of θ. Note that when using kde to estimate derivatives rather
than the function itself, you should use a wider bandwidth. The estimated
standard deviations for our estimators were

σ̂λ = 131.9 , σ̂γc = 0.0931 , σ̂ρc = 21.00 ,
σ̂γl

= 0.0655 , σ̂ρl
= 10, 789 , σ̂α = 0.0481 .

Our estimates for the rate λ of power cuts and the tail decay rates, given
by α, γc and γl, are not too bad; but our estimates for ρc and ρl, which
determine how the distributions of C and L are shifted, are unreliable.

An alternative method for estimating the information matrix is to boot-
strap (studentised) or jackknife from the original data set. This approach is
relatively time consuming, as each run of the stochastic optimisation algo-
rithm takes some time.
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Figure 2 plots (approximate) contours of flog A,log B with the observed
values of (log A, log B) superimposed. The fit is reasonable although there
is clearly room for improvement. The problem is that we cannot increase
the variation of B without also increasing the variation of A. Considering
again the physical rationale for our model, we have good cause to believe
there is positive correlation between C (number of customers affected) and L
(duration) for large power cuts, because a determining factor is the quantity
of resources available for repairing the problem. This argument does not
apply to small power cuts so we have no firm basis for supposing C and L
are positively correlated in this case. Clearly the correlation structure of our
model is not flexible enough to model both of these regimes at once. Without
direct observations of C and L it is difficult to draw further conclusions about
the disparities between model and observations.

4 Discussion

The method used to fit our compound Poisson model for power cuts has the
advantage of being very easy to implement, although it is not particularly fast
and is subject to some uncertainty. It is also very flexible, in the sense that it
is very easy to incorporate additional information. For example, [10] includes
a single observation of the random variable Z = N−1

∑N
i=1 I{Li ≥ 180} for

the year 1997/98. Given that we already simulate L1, . . . , LN in order to
simulate A, very little extra effort is required to of simulate Z, from which
we can easily estimate the joint density of (A, B, Z) and thereby include our
observation of Z in the estimated likelihood.

A potential limitation of our method stems from the well known problem
that kernel density estimation performs poorly in higher dimensions. In
practice kde is rarely used for the joint density of more than five or six
variables, as the sample size required to get a reasonable estimate becomes
too large as the dimension increases.
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Figure 2: (Estimated) contour plot of the joint density of (log A, log B) for
the maximum likelihood estimate of θ. The observed sample points have
been overlaid for comparison.



4 Discussion C617

Our use of simulation to estimate the log likelihood is similar in some re-
spects to the “method of simulated moments” seen in economics research [8,
12]. There as here, it is supposed that one has a parameterised model that
is relatively easy to simulate but hard to analyse otherwise. As the name
suggests, rather than using the likelihood, the method of simulated moments
seeks to match the sample moments of the simulated process with observed
sample moments, using numerical optimisation techniques to find the opti-
mal parameter values. An important difference between the two approaches
is that the method of simulated moments uses only a single random sample,
rather than generating a new sample each time we try new parameter values.
That is, we suppose that the simulation approximation, ĝ(θ) say, can been
written as G(θ,X), where the simulation sample X does not depend on the
parameters θ, so that you can optimise over θ without repeatedly simulat-
ing X. In our case it is possible to formulate l̂(θ) in this way, by thinking of
it as a function of a stream of pseudo random numbers U (simulated i.i.d.
uniform random variables). By resetting the seed used to generate U to the
same value each time l̂(θ) is generated, we can view it as a deterministic
function of θ and thus use a deterministic local search method to maximise
it, rather than stochastic optimisation. The disadvantage of this approach is
that the solution is now a (biased) random variable, with variation dependent
on the simulation sample size.

Lee [7] also considered simulated maximum likelihood, though not using
kernel methods nor stochastic optimisation. He assumes that he has an
unbiased estimator f̂ of f then considers the bias and variance of log f̂ .

Our method for estimating log f is similar to kernel estimators of the en-
tropy [3]. In both cases we have a sum

∑m
i=1 log f̂(xi) where x1, . . . ,xm are

our observations. The difference is that our f̂ is formed from an independent
simulated sample, whereas the entropy estimator f̂ is a kernel density esti-
mate of f formed using the same sample x1, . . . ,xm . Not surprisingly, this
dependency between f̂ and the sample points at which it is evaluated makes
analysis of the entropy estimator relatively difficult.



4 Discussion C618

Finally we mention a rather different route to estimating the likelihood,
using characteristic functions. Conditioning on N , one can easily show that

EeiuA+ivB = e−λ(1−φ((u+v)/nc)),

where φ is the characteristic function of C(1 + L). φ can be calculated nu-
merically, whence the joint density of (A, B) is obtained by applying the
inverse fast Fourier transform to EeiuA+ivB. While more technical, this ap-
proach should prove less numerically intensive than the stochastic optimisa-
tion method. Unfortunately it is quite specific to the form of A and B, and
cannot be extended to include Z, for example.

A Simulation code

The following code was used to simulate (A, B), using Matlab Release 12.1
and the Statistics Toolbox [14]. lambda, alpha, rhoC, gammaC, rhoL and
gammaL are the parameters, n is the number of electricity customers and N,
G, C, L, A and B correspond to the variables with the same names defined in
Sections 1 and 2, noting that G, C and L are vector valued.

N = poissrnd(lambda);

G = gamrnd(alpha,1,[1,N]);

C = exprnd(rhoC./G).^gammaC;

L = exprnd(rhoL./G).^gammaL;

A = sum(C.*L)/n;

B = sum(C)/n;

Since gamrnd uses a rejection method for simulating gamma random vari-
ables and thus uses a non-constant number of pseudo random numbers, when
applying the common random variables technique we reformed our algorithm
so that the same pseudo random numbers would be used to generate C and L

each time:
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N = poissrnd(lambda);

U1 = rand(1,N);

U2 = rand(1,N);

G = gamrnd(alpha,1,[1,N]);

C = (-log(U1).*rhoC./G).^gammaC;

L = (-log(U2).*rhoL./G).^gammaL;

A = sum(C.*L)/n;

B = sum(C)/n;
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