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Drying of vegetation: how fast does the
moisture go?
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Abstract

Live and dead vegetation both need to be dried out prior to com-
bustion in a bushfire. This article presents a simple model that ac-
counts for the heating that occurs inside a cylindrical vegetation sam-
ple which has a prescribed initial moisture content and is subjected
to a heating regime characteristic of a passing bushfire. The model
allows us to predict the death or survival of live vegetation samples of
any given diameter. It can also be extended to include any thermal
properties and any shape for the vegetation sample.
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1 Introduction

During the passage of a fire front, live and dead vegetation must be dried
out prior to being available for combustion. Thermocouple traces of the tem-
perature on the surface of vegetation samples [1] show that there is typically
a very rapid rise of temperature as a fire approaches. This suggests that
the drying of fine scale vegetation must occur over rather short time scales
(seconds or, at most, minutes). Naturally, larger vegetation items, such as
logs, dry out over a longer time scale, provided that heating from ongoing
combustion continues, but for the present study we consider only smaller
items that are either significantly dried out, or are even consumed during
the immediate passage of the fire front. Specifically, we report on our efforts
to develop a mathematically simple yet illustrative model that quantifies the
moisture loss of a cylindrical sample of live vegetation during the passage of
a fire front. In particular, we quantify the manner in which the presence of
moisture slows down the rate of rise of the temperature inside the vegetation.
The model for the heating of the vegetation is based upon the work reported
in [1, 2] and the model formulated in [3], which accounts for the moisture
content. A useful review of previous modelling work on heating vegetation
can be found in [4] and while it anticipates the inclusion of moisture in the
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final model, it does not provide a framework for creating such a model. We
believe that the resultant model for heating and drying is a new and useful
approach.

2 Model A—no moisture

The simplest model is where the temperature rise T (r, t) inside the vegetation
is due only to heating by conduction and the thermal properties are those of
dry vegetation, as considered in [1, 2]. We assume that we have a radially
symmetric cylinder of vegetation with a prescribed temperature applied at
the boundary:

ρcp
∂T

∂t
= λ∇2T ,

with the symmetry condition ∂T/∂r = 0 in the centre at r = 0 and time
dependent boundary condition T = f(t) at r = R . We also assume that the
vegetation cylinder is initially at ambient temperature Ta. In these equations,
ρ is the density of the vegetation, cp is the specific heat, and λ is the thermal
conductivity. The values we use here to illustrate the use of the models
are ρ = 800 kgm−3, cp = 1370 J kg−1 K−1, λ = 0.1Wm−1 K−1, ambient
temperature Ta = 296K and the radius of the cylinder is R = 0.01m. These
are representative values chosen from [1, 2, 3].

The prescribed time dependent boundary temperature profile is also as-
sumed to be radially symmetric and is prescribed in such a way that it
simulates a passing fire front:

T (R, t) = f(t) =


Ta +

A

z
exp

(
−(t− a)2

B2z2

)
, t < a ,

Ta +
A

z
exp (−γ(t− a)) , t > a .

Representative values we choose are A = 250K m−1, a = 50 s−1, B =
√

200
s1/2 m−1, γ = 1/200 s−1 and z = 1m. Note that this gives a maximum
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temperature of Ta + (A/z) = 546K and the typical duration of the entire
heating period is approximately 316 seconds (defined as the time for which
the temperature is above 70◦C).

3 Model B—including moisture

In a similar way to [3], we now introduce a model that includes moisture in
an averaged way. When the vegetation is heated, any free or bound water is
also heated and evaporates during the heating. By the time the boiling point
of water, 373 K, is reached, all of the water will have been evaporated. This
gradual drying out during the heating is included in the model by having
different equations for temperatures above and below the boiling point of
water. The model then becomes

λ∇2T =

{
ρc∂T

∂t
, T ≤ 373 ,

ρcp
∂T
∂t

, T > 373 ,

where the overline denotes an average density and specific heat capacity,
defined according to

ρc = ρ

(
cp,wood + Mcp,water +

L
373− Ta

)
.

Here M (typically M = 0.077 in later calculations) is the initial fractional
moisture content, defined as the weight of the moisture as a proportion of the
dry weight of the vegetation. This is a key parameter and it is related to the
usually quoted percent moisture content by simply multiplying by 100. We
now require the two specific heat capacities, cp,wood = 1370 J kg−1 K−1 and
cp,water = 4186 J kg−1 K−1. Also, L = 2.254× 106 J kg−1 is the latent heat of
vaporisation of water at 373K [3]. The boundary and initial conditions are
assumed to be the same as in Model A.
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We emphasise that the use of the “average” parameter ρc is a modelling
technique that allows us to represent the actual moist vegetation with an
equivalent vegetation which requires the same quantity of thermal energy to
raise it to 373 K and to remove all of the moisture.

4 Comparison of the models

Models A and B are solved using a second order finite difference method,
explicit in both time and space. Figure 1 shows the temperature profiles
along a radial line in the vegetation cylinder for each of the two models.
The first thing to note is that the inclusion of moisture results in the central
temperature being significantly reduced to well below the boiling point of
water, 373 K. The second thing to note is that Model A shows evidence
of the rapid diffusion of heat towards the centre, whereas in Model B, the
heat capacity is larger for the moist wood and, as expected, this hinders the
diffusion until after the fire has passed.

The formulation of Model B, which has a step function in the heat capac-
ity, means that the problem has effectively been changed into something akin
to a Stefan problem, with a moving front whose temperature is 373K. This
front is an interface between vegetation which is still drying and vegetation
which has completely dried. The motion of the front for models A and B is
shown in Figure 2; the presence of moisture in model B results in the much
slower motion of the front.

Figure 3 plots the temperature at the centre of the vegetation sample for
both models A and B. Including moisture in the model results in a significant
effect on the central temperature. With the representative parameter values,
the central temperature in model B rises to its maximum of only 309K after
250 seconds, which is long after the fire has passed. In comparison, the
central temperature in model A rises to about 393K.
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Figure 1: The temperature profiles for (a) Model A (no moisture) and
(b) Model B (moisture included)
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Figure 2: The location of the boiling point front (373K) in Models A (no
moisture) and B (moisture included).

One of the key topics [1] is the thermal death of a fruit or a seed. A typical
criterion is that death will occur if the temperature at 20% of the radius from
the centre of the seed reaches 70◦C. We use a similar criteria appropriate to
the inner radius of the bark of a tree. Specifically, we assume that the critical
temperature is that found at 20% of the radius measured from the outside
of the cylinder (or equivalently at 80% of the radius measured from the
centre). Using the initial moisture content as an adjustable parameter, we
find that a critical moisture content for the current example is 0.75 measured
by dry weight (equivalent to 75% initial moisture content), as this is where
the temperature at the inner radius (of the bark) just reaches 70◦C before
diffusing away. This is shown in Figure 4. This would suggest that the
current heating regime will cause an adverse outcome to a vegetation sample
of radius 0.01m.
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Figure 3: The central temperature for Models A (no moisture) and B (mois-
ture included)

5 A further example

Using parameters taken from [1], we further examine the behaviour pre-
dicted by model B. The parameters are ρ = 509 kgm−3, D = λ/ρcp =
1.3 × 10−7 ms−2, cp,wood = 1370 J kg−1 K−1, cp,water = 4186 J kg−1 K−1. As
for the boundary conditions for the outside of the tree, the fitted param-
eters, for a fire passing with thermocouples at a height of z = 3.5m, are
A = 1172.1Km−1, B = 4.8342 s1/2 m−1 and γ = 0.012932 s−1. We also chose
a = 50 s, the time shift, to give enough time before the fire front arrives.

Going back to the previous point about thermal death when the tem-
perature at 80% of the radius reaches 70◦C, for a given radius of tree, we
can work out what the critical initial moisture content has to be so the tree
survives. Conversely, we could for a given moisture content specific to any
vegetation sample, determine the critical radius so that it survives, as shown
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Figure 4: The temperature-time profile at 80% of the radius, for Model B
calculated with a radius of 0.01m and an initial fractional moisture content
of 0.75 .
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Figure 5: The critical initial moisture content for a given radius for a tree
to survive/die through thermal death, using model B and the parameters in
Section 5.
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in Figure 5. For the parameters quoted at the start of this section, we find
that a tree of radius of 0.04m or above will survive the fire, even if there is
no initial moisture. We also find that for a tree of radius of 0.007m or less,
even if the tree has a moisture content of 100%, it is still going to die.

6 Conclusion

We have presented a model for the heating of vegetation samples and in-
cluded the thermodynamics of the consequent moisture loss in a simple, yet
sensible manner. This illustrates the effect of a particular heating scenario
on a cylindrical sample, showing the effect of initial moisture content and
finding the critical initial moisture content for survival. Any desired heating
scenario for any size sample could be examined in the same way and a suit-
able conclusion determined. Indeed, the method could also be extended to
any shape of vegetation sample and also to multi-layer cylindrical samples,
so that a full range of fruits, seeds, branches and tree trunks, can be studied
using the model developed in this article.
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