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Methods of aircraft trajectory optimisation in
air combat
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Abstract

We overview methodologies to optimise an aircraft trajectory in
a two-player close air combat scenario. In mathematical terms air
combat can be considered as a game. However, due to the highly non-
linear equations of motion involved, the use of classical games theory
is difficult to implement in a computer simulation. The search for
the saddle point of the game is difficult and therefore an indirect ap-
proach is required to search for the best trajectory. At each instance,
one player is given the role of evader and the other the pursuer. The
evader must find the trajectory that avoids or maximises the time to
interception, while the pursuer must find a trajectory that achieves or
minimises the time to intercept the evader. An algorithm has been
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developed and implemented using Evolutionary Programming. Sim-
ulations show that the algorithm is able to find good individuals (or
solutions) in a limited time.
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1 Introduction

Unmanned Combat Aerial Vehicles (ucavs) are predicted to be the next
generation front line fighter aircraft. They provide a viable alternative to
piloted aircraft due to the reduced risk of loss of human life and lower oper-
ating cost [4]. However, ucavs are generally not equipped with intelligence to
respond to the presence of adversaries, which makes ucavs more vulnerable.
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Therefore, there is a requirement to find methods that give intelligence
to an ucav so that it has some capability to respond when it finds itself in
danger [4]. Defense against ground based adversaries can be achieved through
high altitude and level flying, while the response to airborne adversaries will
rely on several factors such as speed, manoeuvrability, weapons and accurate
information.

Various methods have been proposed to equip ucavs so they have some
capability to respond when they find themselves in danger. Eklund et al. [4]
suggests the use of Nonlinear Model Predictive Control (nmpc). Shinar &
Gutman [11] proposes the use of zero-sum differential game theory. Nusyir-
wan & Bil [10] proposed the use of stochastic and evolutionary search to
find the optimal trajectory of an aircraft in air combat. These methods are
explained in more detail in the following sections.

2 Classical approach

2.1 Nonlinear model predictive control

Nonlinear model predictive control (nmpc) is a control technique that explic-
itly addresses nonlinearity in systems with constraints on operation and per-
formance [4]. According to Diehl & Findsein [3], it is also a control technique
that is used for the real-time optimisation of a nonlinear dynamic process.
The algorithm is used to encode the pursuit-evasion game between two ad-
versaries. The control problem is formulated as a cost minimisation problem
by considering the input and state constraints. One important precondition
for the application of nmpc is the availability of reliable and efficient numer-
ical dynamic optimisation algorithms. This is because at each time step or
sampling time, a nonlinear dynamic optimisation problem must be solved.
The time taken to solve the problem must be reasonably fast.
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2.2 Differential games

The use of differential games in aircraft combat analysis in three dimensions
is still in its infancy. It is still difficult to implement it for real time use. The
study was pioneered by Isaac [8] in his “homicidal chauffeur” games. The
study covers various possible scenarios such as aircraft versus aircraft and
missile versus aircraft.

One area is the study of optimal pursuit of a manoeuvring evader, which
has been investigated extensively. According to Glizer [5], the problem can
be formulated in two different ways. If the evader’s trajectory is predictable,
the pursuer has an optimal control at hand. Without such information,
the pursuer has to make assumptions about the evader’s trajectory. The
worst-case assumption considers that the evader strategy is independently
optimised. This leads to a zero-sum differential game problem.

Glizer [5] deals with a pursuit-evasion game of this kind. The solution
consists of identifying a capture zone in the state space. The analysis uses a
simple relevant model; that is, planar constant-speed motion of both players,
limited turning rate for the pursuer, and unlimited turning rate for the slower
evader. The target set is defined by a given non-dimensional capture radius,
which is normalised by the pursuer turning radius. The problem is solved by
assuming that both players have perfect information of the current state. A
barrier path is built to create the condition of guaranteed capture.

Miloh [9] extended the study of pursuit-evasion differential games into
three-dimensions with bounded curvature. Miloh studies the encounter be-
tween a fast but less manoeuvrable pursuer against a slow, but highly agile,
evader. He argues that in many realistic pursuit-evasion situations it is de-
sirable to force the evader into the pursuer’s pitch plane just prior to game
termination.
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3 Evolutionary programming

The Evolutionary Programming (ep) algorithm described by Thomas [2] and
Fogel [1] is selected because it opens up the possibility of searching for an
optimal solution in the presence of nonlinearities, parameter discontinuities
and discrete inputs. Although the search is stochastic, with today’s comput-
ing power, good solutions can be found in a relatively short time. Using this
method, the search for optimal paths begins by initially randomly generating
a population of possible paths or individuals.

Each member of the population is evaluated and given a fitness value
J ∈ R . The J value for each individual is found by running a simulation
(a game) for a period of time, 100 seconds for example. J is the maximum
distance between the players at the end of the game with no interception
by the pursuer. The simulation starts with given initial states of both the
evader and pursuer at time, t = 0 . The evader uses the path given by the in-
dividual and the pursuer uses its own guidance system to guide itself toward
the evader. A solution is considered good if within the 100 seconds of the
simulation, the evader manages to evade interception and, at the same time,
does not exceed the aircraft’s aerodynamic and performance constraints. If
the solution exceeds the aircraft’s constraints, even if interception is success-
fully avoided, the solution is considered “not good” but is nonetheless used
to produce the next offspring. The reason for retaining these paths is to
avoid premature convergence of the solutions to a local optimum.

Selection and mutation of individuals is performed next producing a set
of µ offspring. Good individuals are mutated in the hope that much better
individuals will be produced. The mutation operator is Gaussian with a zero
mean and a unit variance as in Eq. 1.

xi(k + 1) := xi(k) +Ni(0, 1) · β , (1)

where x(k) is the solution vector (that is, column id in Table 1 and Fig-
ure 1(b)), β is the proportionality constant and Ni(0, 1) is the ith randomly
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generated sample from a Gaussian distribution with zero mean and unit vari-
ance.

The offspring and the parents are then combined and compete in a (µ+µ)-
selection to form the next population. In (µ+µ)-selection, µ is the size of both
the parents population and the offspring population. The best µ individuals
out of the union of parents and offspring are selected to become the next
generation. The new population then goes through the evaluation cycle again
to determine the fitness of the individuals.

The process of generating new populations and evaluating their fitness
is repeated until the maximum number of generations has been reached.
The best solution is the solution that has the highest fitness value. Due to
the complexity of the game, the global optimal solution will not be known
a priori.

3.1 Path representation

In each population, there are n strategies or solutions. With a given starting
point each strategy or solution will correspond to a flight path. A strategy is
actually a set of instructions for the aircraft to change its heading, flight path
angle and throttle setting at every second of the simulation. For example,
at t = 0 seconds the aircraft changes its heading angle by φ degrees to the
left, climbs up by γ degrees and sets the throttle to τ , and at t = 1 seconds
again the aircraft has to change its heading angle, flight path angle to a new
direction and the throttle to a new setting. The duration of the simulation
is 100 seconds.

To represent a strategy in a computer program, the change of heading ψ,
flight path γ angles and the throttle setting (see Figure 1(a)), has to be
coded. This is made possible by determining the maximum permissible range
for the heading, flight path angles and the throttle settings. In this research,
the range of the angles is restricted to be between −15◦ and 15◦ for both
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(a) (b)

Figure 1: (a) Definition of heading angle and flight path angle; (b) example
of a coded path.

heading and flight path angles, and the range of the throttle setting between
0.2 and 1.0, being a percentage of the maximum throttle setting.

A discrete angle interval of 1.25◦ was used for both heading and flight path
angles, and for throttle setting the interval was 0.1. We can now generate
(24+1)(24+1)(9) = 5625 possible combinations of heading angle changes,
flight path angle changes and throttle settings. Table 1 shows the coding
for all possible heading angle changes, flight path angle changes and throttle
settings.

Instead of directly using the angles, the strategy uses the values of ids
as shown in Table 1. A series of numbers valued between 0001 and 5625
are randomly constructed such as shown in Figure 1(b) with 100 four-digit
integers ordered in sequence, one four digit integer for each of the 100 seconds
of the flight time. The first value is 5314 which means turn 13.75◦ to the left,
climb 3.75◦ and set the throttle to 0.5%. The next manoeuvre is 0084 which
means ‘and then turn 15◦ to the right, dive 3.75 and set the throttle to 0.4’.
This is repeated for the next sequence up to the last sequence, that is, 1568.
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Table 1: Encoding the heading angle, flight path angle and throttle setting
id Heading Angle Change Flight Path Angle Change, Throttle

(ψ), deg (γ), deg Setting
1 -15 -15 0.2
2 -15 -15 0.3
...

...
...

...
84 -15 -3.75 0.4
...

...
...

...
5314 13.75 3.75 0.5

...
...

...
...

5625 15 15 1

The whole process is called the trajectory/path of the aircraft or a strategy.
A population consists of 30 strategies or individuals.

3.2 Equation of motion

The equations of motion form the basis of the objective function. The value
of the game is the outcome of a pursuit-evasion simulation between the evader
and the pursuer over a period of time. The evader uses the solution given by
ep and the pursuer uses known navigation techniques to try to intercept the
evader. A good solution is when the pursuer could not intercept the evader.

A three degree-of-freedom or point-mass aircraft model is found to be
adequate for the analysis [7]. The trajectory of the vehicle at its center of
gravity is of greater interest than its attitude motions. Newton’s second
law, aerodynamic and performance data are used for the simulation. The
Cartesian approach was used to simulate the aircraft’s states [12]. The state
variables are the vehicle’s inertial acceleration, velocity and inertial positions.
Using the Cartesian approach the derivation of the equations is relatively
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straight forward. The inertial position and velocity coordinates are integrated
from the Newton’s second law. All the aerodynamic and the propulsion forces
are fed into the Newton’s second law given by Eq. 2 from Zipfel [12]:

mDIvI
B = fa,p +mg . (2)

On the left side of Equation 2 is the rotational derivative to the inertial
frame I, with the body to inertial velocity V I

B . The position of the aircraft
in the inertial coordinates is found by integrating the velocity vector with
respect to time. fa,p is the vector of aerodynamic (subscript a) and propulsive
(subscript p) forces acting on the vehicle. The basic aerodynamic forces
such as lift and drag are calculated using the aircraft’s actual aerodynamic
coefficient, CL and CD which are functions of altitude and Mach number.
The propulsion force or thrust is a function of Mach number, altitude and
throttle setting. The thrust is modeled to be constant with airspeed and
proportional to the air density as given in Equation 3 where m is the vehicle’s
mass measured in kilograms and g is the vector of gravitational acceleration:

TA = τ
ρ

ρ0

TA0 , (3)

where τ is a throttle setting ∈ [0, 1], ρ is the air density at altitude, ρ0 is the
air density at standard sea level and TA0 is the full-throttle thrust developed
in standard sea level.

3.3 Pursuer’s control and guidance

Imado & Uehara [7] explain the proportional navigation guidance system em-
ployed by the pursuer. The navigation constant in this study is set to 4. The
pursuer uses this guidance law throughout the game. The pursuer’s speed
is governed by Newton’s Second law. Thus the throttle setting, altitude,
bank angle and flight path angle determine the speed. The pursuer’s throttle
setting is set to maximum at all time.
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The preceding pursuer’s states are calculated and predicted on board the
evader’s computer. The evader is assumed to know the pursuer’s naviga-
tion guidance system and is using it to find an optimal trajectory to evade
interception by the pursuer.

4 Numerical analysis

In this section, Evolutionary Programming (ep) is used to search for the
optimal trajectory of an evader against a much more agile pursuer. The
evader and the pursuer are conventional jet fighters. The pursuer has a
higher engine performance in comparison to the evader. Figure 2 shows the
encounter in three dimensions. In the figure, the pursuer starts at position
(0,0,0) and the evader starts at position (5000,0,1000).

The use of a proportional navigation guidance system with proportional
ratio, N = 4 and pursuer interception radius of 15 m, gives the miss distance
time history in Figure 3. The pursuer uses its extra energy to home in on
the evader, but the high velocity, as in Figure 4, comes with higher turning
radius and lower turning rate. This weaknesses is being exploited by the
evader by turning at a precise time and rate. This forced the pursuer to
overshoot and make another turn. Meanwhile, the evader flew in a direction
that maximise its distance from the pursuer. It is assumed that the evader
knows the pursuer aerodynamic and performance characteristics.

The simulation is carried out using a 3 cpu linux cluster in vpac (Vic-
torian Partnership in Advanced Computing). One cpu acts as the master
and the other two act as the slaves. The master’s task is to select the best
strategy given by the slaves. The slave’s task are to run the optimisation
routine. The number of generation assigned in this simulation is five, with
the number of individuals in a population is set to 100. The whole simulation
takes about 5 seconds. Good individuals (that is, solutions) are found and
elitist selection is used to select the best individual.
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Figure 2: The simulation results of the encounter between the evader and
the pursuer. The encounter in 3D.
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Figure 3: The simulation results of the encounter between the evader and
the pursuer. The distance between the evader and the pursuer.
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Figure 4: The simulation results of the encounter between the evader and
the pursuer. Velocity time history.
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5 Conclusion

Three methodologies, namely Nonlinear Model Predictive Control, Differen-
tial Games and Evolutionary Programming, have been considered to deter-
mine optimal trajectories in an air combat scenario. The first two suffer from
various problems such as singularity problems, discontinuity or converging
to a local optima. Also, most of the proposed solutions are not suitable for
real time analysis due to the extensive computation time required. Also,
many of the proposed algorithms concentrate on a 2D plane rather than 3D
space. There are several key issues in the modeling of aircraft in air combat
that have not yet been solved satisfactorily. Like differential games, most of
the studies are devoted to obtaining exact minimax solutions for simplified
problems, which are practically inapplicable in real world problems [6].

As an alternative, an algorithm using Evolutionary Programming is devel-
oped to find optimal trajectories for an evader against a highly agile pursuer
in an air combat scenario. It was possible to find good solutions in a rela-
tively short time. The possibility of finding good solutions is sensitive to the
players’ aerodynamic and engine performance, aircraft configurations, the
total time of the pursuit, the number of individuals in the population, and
the players’ initial conditions. Although the trajectory found for the above
example is good, there are times where a good solution cannot be found.
This happens when the pursuer has a superior turning capability and energy
than the evader. Like playing a chess game, where a piece can be sacrificed
to achieve a higher goal, ep was able to find a trajectory that utilised the
same approach. For example, by allowing the pursuer to come close enough
but not too close for an interception and turning hard at the right time, the
evader could out manoeuvre the pursuer to the maximum miss distance.
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