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Simulation of transient blood flows in the
artery with an asymmetric stenosis
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Abstract

This article focuses on the transient behaviour of blood flow in
stenotic arteries. Human blood is modelled as an incompressible non-
Newtonian fluid. A numerical technique based on the finite element
method is developed to simulate the blood flow taking into account
of the transient periodic behaviour of the blood flow in cardiac cy-
cles. The flow pattern, the distribution of pressure and the wall shear
stresses, are computed. The results show that the pulsatile pressure
and the time variation of wall shear rate have patterns similar to that
for the pulsatile velocity during the cardiac cycles. On the back toe of
the stenosis there exists a small recirculation region which causes the
direction of the wall shear stress in some part to oscillate, likely lead-
ing to atherosclerotic disease. The back toe is thus an ideal location
for applying a clot dissolving drug.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/107
for this article, c© Austral. Mathematical Soc. 2008. Published May 6, 2008. ISSN 1446-
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1 Introduction

The blood circulatory system consists of parts such as the heart, the arterial
and the venous systems as well as the microcirculatory systems. The presence
of unusual hemodynamic condition in the arteries often creates abnormal
biological responses. Skewing of the blood speed in some region could cause
oscillating direction of wall shear stress which can create pockets leading to
atherosclerotic disease. The skewing of velocity tends to be localized and
results in the narrowing of the artery lumen—a stenosis [1]. In the arteries
with high grade stenoses, very high shear stresses near the throat of the
stenosis can activate the platelets. This induces thrombosis, and may totally
block the blood flow to the heart and lead to heart attacks and strokes.

In order to understand the genesis of coronary diseases, over the past two
decades, a number of mathematical models have been proposed to describe
the rheological behavior of blood in stenotic arteries. Most models assume
that blood acts as a Newtonian fluid with constant viscosity and that the
vessel is rigid. Models of this type do not provide a satisfactory description of
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the dynamics of real pulsatile blood flow in the artery. Mann and Tarbell [2]
used a non-Newtonian model to determine a nonlinear dependence of the
viscosity of blood on the strain rate. Their model was intended to study the
flow of fluid analog of blood in rigid curved and straight arteries. Grigioni
et al. [3] investigated the wall shear stress and velocity field in an in vivo ex-
periment of unsteady vascular dynamics. They used a non-Newtonian model
to describe an unsteady flow in a rigid pipe driven by a known oscillatory
pressure gradient.

Although blood flow has been modelled by many researchers, there have
only been a few numerical studies on the flow in stenotic arteries using the
realistic pulsatile flow conditions on the inlet and outlet [4]. In this article
a mathematical model is developed to study the unsteady state blood flow
through a stenotic artery of different severity. Blood is modelled as a non-
Newtonian fluid. Using the straight tube (as shown in Figure 1) having
three different size of stenosis, 50%, 65% and 75%, numerical simulations are
carried out for the flow field, temperature field, shear rate and wall shear
stresses, based on the finite element method. Dependence of the flow on the
severity of stenosis is investigated.

2 Mathematical model

Precise blood flow analysis requires simulating the flow of blood through the
lumen and the various layers in deforming blood vessels. However, to capture
the main feature of blood flow and to keep the model simple, in this work
the flow through the intimal and media layers and the deformation of blood
vessels are neglected.

Generally, when the shear rate is greater than 100 s−1, blood behaves as
an incompressible Newtonian fluid [5, 6, 7]. However, when the shear rate is
lower than 100 s−1, blood behaves as a non-Newtonian fluid and the stresses
depend on the deformation rate nonlinearly. Various non-Newtonian models
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have been proposed including the power law model, the Carreau model. In
all these models, the stresses are related to the deformation rate by

σij = −pδij + µn(ui,j + uj,i) , (1)

which is similar to the Newtonian model except that the viscosity is the
function of shear rate instead of a constant. In different non-Newtonian
models, there are different relations between the viscosity µn, and the shear
rate

γ̇ =

√
2 tr

[
1

2
(ui,j + uj,i)

]2

.

This article focuses on blood flow in the artery lumen. We assume that
blood is an incompressible non-Newtonian fluid. The Carreau model is used
to determine the viscosity of blood, µn = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2 ,
where µ0 is the zero shear viscosity, µ∞ is the infinite shear viscosity and
n is a parameter between 0 and 1. In this study µ0 = 0.56 g cm−1 s−1, µ∞ =
0.0345 g cm−1 s−1, λ = 3.313 s and n = 0.3568 . The equations governing the
blood flow include the constitutive equation (1) and the following continuity
equation and the stress equations of motion,

ui,i = 0 , (2)

ρ

(
∂ui

∂t
+ ujui,j

)
=
∂σji

∂xj

+ Fi , (3)

where we use the index notation with repeated literal index representing sum-
mation over the index range, ρ denotes the blood density which is 1.06 g cm−3,
ui represents the component of velocity vector in the ith direction, p denotes
pressure in the channel, and F is the body force acting on the fluid.

To specify the boundary conditions for the problem, we consider precisely
the blood flow mechanism. The heart is a two step pump: first the atria, then
the ventricles contract. The heart ejects and fills with blood in alternating
cycles known as systole and diastole. Blood is ejected from the left ventricle
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Table 1: Values of parameters used in computational region.

n αQ
n θQ

n αp
n θp

n

1 17.28 2.256 -21.740 -0.406
2 -34.91 -0.226 -9.088 0.202
3 -16.11 1.228 4.771 -0.633
4 11.70 4.882 2.035 -4.315
5 6.64 -0.074 0.768 3.932

into the arterial system during systole. The heart rests during diastole in
which no blood is ejected. The cyclic nature of the heart pump creates
pulsatile conditions in all the arteries.

Ignoring the variation of cardiac period, the flow rate and the pulsatile
pressure are determined by the following Fourier series representations

Q(t) = Q̄+
5∑

n=1

αQ
n cos

(
2nπt

T
− θQ

n

)
, (4)

p0(t) = p̄+
5∑

n=1

αp
n cos

(
2nπt

T
− θp

n

)
, (5)

where Q̄ = 59.09 cm3 /min and p̄ = 122.5 mmHg are respectively the mean
flow rate and mean pressure, T = 0.75 s is the cardiac period, and the values
of αQ

n , αp
n, θQ

n and θp
n are listed in Table 1 [8].

We therefore impose a pulsatile flow rate condition on the inlet bound-
ary ∂Ωin and a corresponding pulsatile pressure condition on the outlet
boundary ∂Ωout of the computational region.

Now by substituting equations (1) into (3), we obtain the following Navier–
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Stokes equations

ρ

(
∂ui

∂t
+ ujui,j

)
= Fi − p,i + [µn(ui,j + uj,i)],j (6)

which together with the continuity equation (2) constitute a closed system
of four partial differential equations in terms of four coordinate and time
dependent unknown functions u1, u2, u3 and p. The system, supplemented
by the initial condition and boundary conditions, is solved numerically to
yield the velocity field and the pressure distribution and consequently the
shear stresses on the arterial wall.

3 Method of solution

To develop the variational statement for the boundary value problem, we
consider the following integral representation of the problem.

Find u1, u2, u3 and p ∈ H1
Ω such that for all test functions û1, û2, û3 ∈

H1
0u(Ω) and p̂ ∈ H1(Ω) , all the Dirichlet boundary conditions for the un-

known functions are satisfied and

(ui,i, p̂) = 0 , (7)(
ρ
∂ui

∂t
, ûi

)
+ (ρujui,j, ûi)− ([µn(ui,j + uj,i)],j, ûi) + (p,i, ûi) = (Fi, ûi) ,

(8)

where (·, ·) denotes the inner product on the square integrable function
space L2(Ω), H1(Ω) is the Sobolev spaceW 1,2(Ω) with norm ‖·‖1,2,Ω, H1

0u(Ω) =
{v ∈ H1(Ω) | v = 0 on ∂Ωin and ∂Ωwall}. A standard procedure is then car-
ried out to reduce the second order derivatives involved in the above problem
into the first order ones using integration by parts to ensure that all integrals
involved are well defined.
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To find the numerical solution of the problem, we pose the variational
problem into an N -dimension subspace. The computation domain Ω is dis-
cretized into a finite number of elements connected by N nodes. Let U and P
denote respectively the global vectors with each ith entry representing the
value of the corresponding unknown function at the ith node of the finite
element mesh. Then, by using the Galerkin finite element formulation, we
obtain the following systems of ordinary differential equations:

DuU = 0 ,

MU̇ + AuU + ApP = F , (9)

where the superposed dot represents differentiation with respect to time and
all coefficient matrices are global matrices assembled from the element ma-
trices. Matrix M corresponds to the transient term, matrices Au and Du

correspond to the advection and diffusion terms, matrix Ap corresponds to
the pressure term and vector F provides the forcing functions for the Navier–
Stoke equations. A standard backward Euler scheme is then used to solve
the above system of ordinary differential equations to determine the velocity
and pressure fields at any instant of time.

4 Numerical results and discussion

The examples under consideration are stenotic arteries with 50%-, 65%- and
75%-area severity. The 3D geometries are straight tubes of length of 5 cm and
diameter of 0.210 cm in which a stenosis with spherical curvature is present
in the middle part on one side of the internal wall as shown in Figure 1.

The computational domain Ω is bounded by the boundary ∂Ω = ∂Ωin ∪
∂Ωwall ∪ ∂Ωout . As numerical error decreases as element size decreases, a
grid resolution study is carried out to investigate the effect of finite element
mesh on numerical results. The results show that the solution converges
when the number of element reaches 11,836 elements. Hence, in this study,
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Figure 1: The finite element mesh of the 75% stenotic tubes.

(a) Vector plot: Velocity profiles (cm/s).

(b) Streamline: Velocity field.

Figure 2: Velocity profiles and streamlines in the Oxy plane for the 75%
stenotic tube at the peak of systole.
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the 3D geometry tubes are discretized into 11,836 quadratic tetrahedron ele-
ments with 68,858 degrees of freedom (velocity and pressure). The solutions
were computed for five cardiac cycles to ensure reproducibility of the pulsed
characteristic flow. The time step size ∆t used for each model is allowed
to have different values. For the case with more percentage area severity,
we use smaller time step size. For the case of 50%-area severity, the min-
imum time step is taken to be ∆tmin = 0.005 s, the maximum time step
is ∆tmax = 0.01 s, and for 65%- and 75%-area severity, the time steps are
changed to ∆tmin = 0.001 s, ∆tmax = 0.005 s.

To determine the inlet pulsatile flow rate and outlet pulse pressure, the
parameters listed in Table 1 are used. Figure 2 depicts the longitudinal
velocity vectors and streamlines at the peak of the systole in the Oxy plane
for the 75% stenotic tube. The plot clearly shows the flow pattern. Upstream
from the stenosis, the velocity profile in the x-direction is parabolic as shown
in Figure 3, and the fluid passes through the stenosis at high speed, especially
at the throat of the stenosis. Downstream from the stenosis region, the distal
part, the flow has stair-step shape profile and the longitudinal velocity ux is
negative (along the negative x direction) in the recirculation region. A region
of reversal flow occurs at the downstream, next to the stenosis whereas the jet
impinging occurs at the throat of the stenosis. Higher area blockage severity
leads to larger pressure dropping around the stenosis and consequently gives
higher speed in the stenosis area.

The relation between the blood pressure and blood velocity field are
demonstrated in Figure 4. These figures illustrate the pressure distribu-
tion along a longitudinal line and the mean flow velocity of blood at the
throat line during the systolic periods. It shows that the pressure drops very
quickly near the stenosis site and creates a jet flow at the throat of the steno-
sis. The results also show that a slightly increasing zone of ascending motion
is present in the upstream zone. When the flow reaches the stenosis site,
the pressure suddenly drops causing a suddenly increasing blood velocity of
519.931 cm / s at the peak of the systole and 450.171 cm / s at the peak of
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Figure 3: The velocity ux at the peak of systole in the Oyz plane of the 75%
stenotic tube: (a) at the upstream cross section x = 1.5 cm, (b) at the throat
cross section x = 2.5 cm, and (c) at the downstream cross section x = 2.7 cm
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Figure 4: Pressure along a longitudinal line and mean flow at the throat
line of 75% stenotic tube during the systolic period.

the diastole. Near the stenosis site, the flow accelerates (dQ/dt is positive)
when a negative pressure gradient exists. In the downstream zone, the flow
decelerates and an adverse pressure gradient exists. This means that an
extra higher pressure jump is created to impel the flow passing through a
narrowing channel. Figure 5 shows the time characteristics of the pulsatile
flow in terms of mean flow, pressure and shear rate. In a healthy artery, the
wall shear stress is approximately 15 dyn / cm2 [9]. To determine the critical
flow condition, measurement of wall shear stress using numerical experiments
becomes necessary. The shear rate and wall shear stress were computed for a
model with 75%-area severity. The magnitude of shear rate along a longitu-
dinal line increases sharply before the occlusion is approached and reaches a
maximum value near the center of the throat around 2× 104 s−1 at the peak
of the systole and at 8×103 s−1 at the peak of the diastole. It then decreases
in the downstream. To depict the wall shear stress along the arterial wall, we
plot the solution on the plane representing the wall surface where the stenosis
is located at the center. The direction of the wall shear stress oscillates in
the recirculation zone at downstream as shown in Figure 6.
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Figure 5: Pulsatile flow velocity, pulse pressure, and variation of shear rate
with respect to time at an upstream point (2.3,0,0) for a 50% stenotic tube.
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Figure 6: Wall shear stress at the end of diastole t = 3.70 s: (a) surface
plot, (b) contour plot.

Comparing the results obtained from three stenotic tubes with 50%-, 65%-
and 75%-area severity, we find that higher percent-area severity of stenosis
leads to higher extra pressure jumps, higher blood speeds around the stenosis
site, higher shear rate and higher wall shear stress.

5 Conclusions

A mathematical model for simulating the blood flow in stenotic arteries has
been constructed. The model is used to study the critical flow in stenotic
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arteries with three different severities of 50%, 65% and 75%. A rapid fall in
pressure is observed as the occlusion is approached. Higher percentage area
severity leads to greater pressure drops around the stenosis. It also leads
to higher speeds in the stenosis area. The results clearly show the relation
between pressure and velocity field. The flow is accelerating when a negative
pressure gradient exists at the stenosis site. The flow decelerates when an
adverse pressure gradient exists. This extra pressure jump helps to impel the
flow passing through the narrowing channel. The results also show a similar
pattern in the pulsatile velocity, in the pulse pressure and in the variation of
shear rate in cardiac cycles. These confirm the features of the characteristic
of the periodic motion. Therefore, in the presence of a narrowing vessel lumen
with different area severity, the flow experiences resistance, which causes an
increase in the shear stress and in the pressure drop. Higher percent-area
severity of stenosis produces a higher pressure drop, a higher blood speed, a
higher shear rate and a higher wall shear stress.

Blood flow in a small stenotic artery is an extremely complex phenomenon.
There are many unresolved modeling problems such as the flow in the arte-
rial wall which is deformed during the cardiac period. The presented work
only focuses on blood flow in the lumen channel which does not include the
effect of the wall. Further work will be carried out to incorporate fluid-wall
interaction in the stenotic artery.
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