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Continuous time system identification using
subspace methods
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Abstract

System identification is a well known technique for developing
mathematical models based on plant input and output data sequences.
Models that describe the systems may be in various forms and one of
the possibilities is a state space model formulation. The state space
mathematical modelling involves vectors and matrices in a unique ge-
ometrical framework. It offers the key advantages on providing low
parameter sensitivity with respect to perturbation for high order sys-
tems and also has shown its ability to present multi-input and multi-
output systems with minimal state dimensions. We use a time domain
subspace approach in conjunction with Laguerre filters and instrumen-
tal variables to develop a mathematical formulation of the state space
model for identification of a continuous time system. The method aims
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at searching for accurate matrices of the state space model to ensure
that the constructed model closely mimics the actual system as well as
provide information for the purpose of control system design. The sub-
space identification algorithm provides state space models with better
conditioning, improved quality and easily maintainable parametrisa-
tion. The algorithm is validated with identification of two systems: a
simulated plant, and a magnetic bearing system. For both systems,
the computer simulation results demonstrate that the obtained model
describes the system closely.
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1 Introduction

System identification provides a useful means to obtain mathematical models
for controller design [1, 2]. The identified models predict dynamic proper-
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ties of a given system under various operating conditions. Nowadays, system
identification is considered as a well known technique for developing math-
ematical models based on plant input and output data sequences. The mo-
tivation and goal of researching into this area partially lie on achieving an
accurate plant model which therefore will be useful for further investigation
of the system controller design. This article studies the continuous time sys-
tem, and the model is constructed in the framework of state space model
formulation. The state space mathematical realisation involves vectors and
matrices in a unique geometrical framework. It offers the key advantages of
providing low parameter sensitivity with respect to perturbation for higher
order systems and also has shown its ability to present multi-input and multi-
output systems with minimal state dimensions.

A time domain subspace approach builds the state space model. Since
the first introduction, subspace methods have shown promising achievement
in developing a model for application such as flexible structure [3, 4], flexible
aircraft [5], aircraft dynamics [6], power transformer [7], antenna array sys-
tem [8], distillation columns in the chemical industry [9] and semiconductor
exposure apparatus [10]. In addition to its numerical simplicity and requiring
no iterative procedures, the subspace method is also convenient for optimal
estimation and control. However, without special treatment, the subspace
method usually gives bias when implemented to a system that works under
closed-loop operation. Ljung [1] identified that the problem is due to correla-
tion between process noise (from feedback mechanism) to the input system.
Nevertheless, it is desirable to have a subspace approach that works satisfac-
torily regardless of whether the data is collected in open-loop or closed-loop
manner.

The subspace method for continuous time system identification presented
in this article is partially influenced by the ideas of Yang [11], with time do-
main perception instead of frequency domain. Haverkamp [12] gives a similar
perspective. Here, the Laguerre filter constructing the w-operator is imple-
mented similar to Yang [11] and an instrumental variable adopting to the
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constructing model is similar to Haverkamp’s [12]. The instrumental vari-
ables are constructed based on the responses of higher order Laguerre filters
which reduces the effects of noise and disturbances on the estimate of the
state space model. Furthermore, the modified Gram–Schmidt factorisation
has provided us with better conditioning in comparison to standard LU fac-
torisation.

The remainder of the article goes as follows. Section 2 presents the algo-
rithm for continuous time system identification using subspace method. The
construction of the filtered data matrices is addressed and the framework of
identification algorithm is also outlined in Section 2. Section 3 shows the ex-
perimental identification results to illustrate the performance of the subspace
method on identifying two continuous-time systems: one is a simulated plant
with coloured noise while the other is a magnetic bearing system apparatus.
Section 4 concludes.

2 Continuous time system identification

In mathematical formulation, the continuous time system is given by the
state space model equations

ẋ(t) = Ax(t) +Bu(t) , (1)

y(t) = Cx(t) +Du(t) . (2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the measured input signals,
and y(t) ∈ Rl is the measured output signals. Matrices A ∈ Rn×n , B ∈
Rn×m , C ∈ Rl×n and D ∈ Rl×m are the system matrices. The ẋ denotes the
time derivative of x.

Next, we introduce the Laguerre filter used in the continuous time identi-
fication algorithm. The Laguerre filters are closely related to the first order
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all-pass filter. They also have certain similarities with the discrete time do-
main z-operator [12]. These properties are exploited in the identification of
continuous time systems. The ith continuous time Laguerre filter is

Li(s) =
√

2p
(s− p)i−1

(s+ p)i+1
, (3)

where p > 0 is the scaling factor to ensure that the filters are stable.

Let us introduce a w-operator that corresponds to the all-pass Laguerre
filter:

w(s) =
s− p
s+ p

, s = p
1 + w

1− w
, p > 0 . (4)

The transformation of the zeroth Laguerre filter L0(s) =
√

2p/(s+ p) gives
(1− w)/

√
2p . By repetitively multiplying with w, a bank of Laguerre filters

is obtained with filter order denotes as (`0(t), `1(t), . . . , `i(t)) . Therefore, the
model description in (1–2) is transformed into

[wẋ](t) = Awx(t) +Bw[`0u](t) , (5)

[`0y](t) = Cwx(t) +Dw[`0u](t) , (6)

with Aw = (A+ pIn)−1(A− pIn) ,

Bw =
√

2p(A+ pIn)−1B ,

Cw =
√

2pC(A+ pIn)−1 ,

Dw = D − C(A+ pIn)−1B , (7)

and A = p(In − Aw)−1(In + Aw) ,

B =
√

2p(In − Aw)−1Bw ,

C =
√

2pCw(In − Aw)−1 ,

D = Dw + Cw(In − Aw)−1Bw , (8)

where [`iy](t) denotes the convolution of y(t) with `i(t) and [`iy](t) =
∫ t

0
`i(t−

τ)y(τ) dτ (same implementation to [`iu](t)). With the transformed system
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description, the continuous time data equation is defined to be
[`0y] (t)
[`1y] (t)

...
[`i−1y] (t)

 =


Cw

CwAw
...

CwA
i−1
w

x(t)

+


Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0
CwA

i−2
w Bw · · · CwBw Dw




[`0u] (t)
[`1u] (t)

...
[`i−1u] (t)

 (9)

Introduce the notation

Y w
i,j(t) =


[`iy] (t)

[`i+1y] (t)
...

[`i+j−1y] (t)

 ; Γw
j =


Cw

CwAw
...

CwA
j−1
w

 ;

Hw
j =


Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0
CwA

j−2
w Bw · · · CwBw Dw

 .

Uw
i,j(t) is defined similar to Y w

i,j(t). With this notation, the continuous time
data equation is rewritten in a compact form as

Y w
i,j(t) = Γw

j [wix](t) +Hw
j U

w
i,j(t) . (10)

Using the sampled data at sampling times t1, t2, . . . , tN , the sampled data
matrices are

Y w
i,j,N =


[`iy] (t1) [`iy] (t2) · · · [`iy] (tN)

[`i+1y] (t1) [`i+1y] (t2) · · · [`i+1y] (tN)
...

...
. . .

...
[`i+j−1y] (t1) [`i+j−1y] (t2) · · · [`i+j−1y] (tN)

 (11)
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Xw
i,N =

[
[wix] (t1) [wix] (t2) · · · [wix] (tN)

]
. (12)

With these matrices, the sampled data equation becomes

Y w
i,j,N(t) = Γw

j X
w
i,N(t) +Hw

j U
w
i,j,N(t) . (13)

Now, the output data sequences is divided into two categories known as past
and future output. Past output is denoted by constructing the data matrices
from 0th to (i − 1)th order and is represented by Y w

0,i,N , whereas the future
output is denoted by constructing the data matrices from ith to (j − 1)th
order and is represented by Y w

i,j,N . Similar construction of data matrices
is applied to past and future input, and is represented as Uw

0,i,N and Uw
i,j,N

respectively.

Next, we introduce the projection on the null space of Uw
0,i,N ,

Π⊥U0,i,N
= I − U>0,i,N(U0,i,NU

>
0,i,N)−1U0,i,N . (14)

By multiplying (14) to both side of (13) the term Hw
j U

w
0,i,N will be removed

as U0,i,NΠ⊥0,i,N = 0 . Therefore, we obtain

Y w
0,i,NΠ⊥U0,i,N

= Γw
i X

w
0,NΠ⊥U0,i,N

. (15)

Equation (15) produces a state space model with reasonable quality if the
noise level in the system is sufficiently small. However, for most of the
system the noise existence either from process or measurement noise is often
unavoidable. To reduce the effect of noise, we propose to use instrumental
variables in the identification of state space models.

We construct the instrumental variables using future input and future
output data, where the instrumental data matrix

Z =

[
Uw

i,j,N

Y w
i,j,N

]
. (16)

Now multiply again (15) with projection matrix of Π⊥Z to obtain

lim
N→∞

1

N
Y0,i,NΠ⊥U0,i,N

Π⊥Z = lim
N→∞

1

N
ΓjXi,NΠ⊥U0,i,N

Π⊥Z . (17)
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Another matter to be considered is the effect of initial state condition of the
state space system. This problem is overcome by introducing data matrices
constructed from the set of Laguerre filter. Here,

Ψi,j,N =


`i(t1) `i(t2) · · · `i(tN)
`i+1(t1) `i+1(t2) · · · `i+1(tN)

...
...

. . .
...

`i+j−1(t1) `i+j−1(t2) · · · `i+j−1(tN)

 . (18)

The past Laguerre filter bank is used for causal case and is denoted by Ψ0,i,N

while the future Laguerre filter bank is used for anti-causal case and is de-
noted by Ψi,j,N . This term results in the exponential decay of the initial state
of the state space system.

2.1 Constructing filtered data matrices

There are few ways that could be implemented in order to generate the
Laguerre functions [13]. Here we use the numerical solution of the differential
equations 

l̇1(t)

l̇2(t)
...

l̇i(t)

 =


−p 0 · · · 0
−2p −p · · · 0

...
. . . . . .

...
−2p · · · −2p −p



l1(t)
l2(t)

...
li(t)

 , (19)

with the initial conditions 
l1(0)
l2(0)

...
li(0)

 =
√

2p


1
1
...
1

 . (20)



2 Continuous time system identification C720

Hence, a set of continuous time Laguerre functions are found numerically by
iteratively solving the difference equations

l1(ta+1)
l2(ta+1)

...
li(ta+1)

 ≈

−p 0 · · · 0
−2p −p · · · 0

...
. . . . . .

...
−2p · · · −2p −p



l1(ta)
l2(ta)

...
li(ta)

×∆t+


l1(ta)
l2(ta)

...
li(ta)

 , (21)

with 
l1(t0)
l2(t0)

...
li(t0)

 =
√

2p


1
1
...
1

 , (22)

and ∆t = ta+1 − ta being the integration step size (sampling rate).

To generate the filtered input and output, and instead of performing
a convolution, the data matrices are developed via implementation of the
solution of the differential equation

ż1(t)
ż2(t)

...
żi(t)

 =


−p 0 · · · 0
−2p −p · · · 0

...
. . . . . .

...
−2p · · · −2p −p



z1(t)
z2(t)

...
zi(t)

+
√

2p


1
1
...
1

 y(t) . (23)

Therefore, a set of filtered output is generated numerically by iteratively
solving the difference equations

yf
1 (t)

yf
2 (t)
...

yf
i (t)

 ≈


yf

1 (t)

yf
2 (t)
...

yf
i (t)

+


−p 0 · · · 0
−2p −p · · · 0

...
. . . . . .

...
−2p · · · −2p −p



yf

1 (t)

yf
2 (t)
...

yf
i (t)

×∆t
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+
√

2p


1
1
...
1

 y(t)×∆t , (24)

with zero initial condition of yf
i (t). The filtered input is also formed in a

similar way.

2.2 Identification using a causal IV

Let Li(s) be a bank of causal Laguerre filters (p > 0). Let u(t) and y(t)
be the input and output plant data described in (1) and (2). Let Uw

0,i,N ,
Y w

0,i,N , Uw
i,j,N and Y w

i,j,N be constructed from u(t) and y(t), according to (11)
and Ψ0,i,N as in (18).

Consider the RQ factorisation
Ψ0,i,N

Uw
0,i,N

Uw
i,j,N

Y w
i,j,N

Y w
0,i,N

 =


R11 0 0 0 0
R21 R22 0 0 0
R31 R32 R33 0 0
R41 R42 R43 R44 0
R51 R52 R53 R54 R55



Q1

Q2

Q3

Q4

Q5

 . (25)

Then

lim
N→∞

1√
N

[
R53 R54

]
= lim

N→∞

1√
N

Γw
i X

w
0,N

[
Q3

Q4

]>
. (26)

Proof: From the the RQ factorisation of (25) we have

lim
N→∞

1√
N

[
R53 R54

]
= lim

N→∞

1√
N
Y w

0,i,N

[
Q3

Q4

]>
. (27)
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From (13) and (17)

lim
N→∞

1√
N
Y w

0,i,N

[
Q3

Q4

]>
= lim

N→∞

1√
N

Γw
i X

w
0,N

[
Q3

Q4

]>
. (28)

The terms due to the input and the initial state are zero because of the
orthogonality between (Q1, Q2) and (Q3, Q4). The noise terms will also dis-
appear as N goes to infinity. ♠

2.3 Identification algorithm

The identification procedure used is based on the causal Laguerre filter. The
subspace algorithm to identify the continuous time system is the following.

1. Construct the filtered data matrices of Uw
0,i,N , Uw

i,j,N , Y w
0,i,N and Y w

i,j,N

according to (24), and Ψ0,i,N according to (21).

2. Perform the RQ decomposition
Ψ0,i,N

Uw
0,i,N

Uw
i,j,N

Y w
i,j,N

Y w
0,i,N

 =


R11 0 0 0 0
R21 R22 0 0 0
R31 R32 R33 0 0
R41 R42 R43 R44 0
R51 R52 R53 R54 R55



Q1

Q2

Q3

Q4

Q5

 .

3. Perform the singular value decomposition (svd) to the working matrix[
R53 R54

]
: [

R53 R54

]
= USV > .

4. Determine the model order n from the singular value in S, and con-
struct Un from the first n columns of U . Take U1 as the upper (i −
1)l rows of Un and U2 the lower (i− 1)l rows of Un.
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5. Compute Aw and Cw:

Cw = the upper l rows of Un,

Aw = U †1U2 .

6. The A and C are obtained using the relations

A = p(In + Aw)(In − Aw)−1 ,

C =
√

2pCw(In − Aw)−1 .

7. Solve least squares problem from model structure

y(t | B,D) = C(qIn − A)−1Bu(t) +Du(t) .

8. Reconstruct B and D from (B,D).

9. Generate the predicted output.

3 Simulation examples

To demonstrate the performance of the proposed approach in identifying a
continuous time system, we chose two sets of data: a simulated system with
coloured noise disturbance (System 3.1); and a set of real plant data from
magnetic bearing system apparatus (System 3.2).

3.1 Coloured noise

System 3.1 has the transfer function

G(s) =
100

(s+ 1)(s+ 3)
.
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Figure 1: Input and output data System 3.1
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The input signal, u(t) is generated using a Gaussian random binary sig-
nal (grbs) with a coloured noise sequence. At sampling time, t = 0.005 s,
5000 sets of input and output data is obtained. Then, the output is contam-
inated with a random walk type disturbance with a discrete filter V (z) =
0.1/(z − 0.1) . Figure 1 shows the plot of input and output data. This data
set is further divided into estimation data set and validation data set. Re-
lated design parameters used in the algorithm are set to i = 10 and p = 1 .
The performance of the estimated model is assessed based on the fit between
the measured output and the estimated one. The comparison results of esti-
mation and validation data sets with the predicted outputs from the model
obtained using subspace method is shown in Figure 2. The result shows
that the model could describe the system closely. Further verification tests
on mean square error (mse) and system variance give mse = 0.0105 and
var = 0.9985 for estimation data and mse = 0.0096 and var = 0.9976 for
validation data. This shows that the model is able to identify the system with
low mse and good percentage of accuracy even to a validation data set that
was not used in the estimation. The Bode plot of system frequency response
is also compared with the model’s frequency response as in Figure 3.

3.2 Magnetic bearing system

The second data set is taken from a magnetic bearing system apparatus. This
system has four input and four output system that maintain the position
of rotor on x-axis and y-axis for two-sided, left and right bearing. As for
the single input and single output case, four sets of input output data are
collected from the experimental apparatus. However, this article only shows
one experimental result as the other three can be treated in the same manner.
The sampling interval is ∆t = 7.8125 × 10−4 s, 1024 samples of input and
output data are collected. Figure 4 plots the input and output data. Again,
the data set is divided into an estimation data set and a validation data
set. Related design parameters used in the algorithm are set to i = 10 and
p = 1 . The comparison results of 512 data points of estimation and validation
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data sets between the model’s output and system’s output are shown in
Figure 5. Verification tests on mean square error (mse) and system variance
give mse = 0.0113 and var = 0.7830 for estimation data and mse = 0.0125
and var = 0.7936 for validation data.

4 Conclusion

We presented a subspace method to identify a continuous time state space
model using instrumental variables. The innovation of constructing filtered
data matrices using differential equations provides better computation and
easily maintainable parametrisation. In addition, the use of causal Laguerre
filters and instrumental variables improves the quality of the model in the
presence of measurement noise. This approach was applied to the set of
simulated data and the set of experimental data generated from a magnetic
bearing system apparatus. Both applications show the efficacy of the pro-
posed algorithm.
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