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Energy transduction analyses of piezoelectric
based vibration control of smart structures
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Abstract

Passive vibration shunt control using piezoelectric materials and
an electrical network can remove vibration energy from structures.
However, the vibration shunt control efficiency relies on the opti-
mization of the vibration energy transfer between a structure and
a Lead-Zirconate-Titanate piezoelectric ceramic material. We present
an analytical study of a parallel resistor-inductor piezoelectric vibra-
tion shunt control on a beam structure using Hamilton’s principle and
Galerkin’s method. The influence of the material’s mechanical prop-
erty on vibration energy transfer between the structure and the Lead-
Zirconate-Titanate is discussed. The results of the vibration shunt
control with various materials obtained from numerical modeling and
experiments are discussed and corroborated.
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1 Introduction

Structural vibration control has been a subject of engineering research for
the past few decades. Recently, the use of “smart” materials for vibration
control has become an alternative to traditional vibration control techniques.
Vibration control with smart materials has several advantages such as lighter
weight, smaller size, flexibility in the structure and lower cost. They are
especially suitable where the traditional techniques cannot be applied due to
weight and size restrictions.

The smart material components such as Lead-Zirconate-Titanate (pzt),
a piezoelectric ceramic material, converts mechanical energy into electrical
energy and vice versa. Hagood and von Flotow [3] demonstrated that the
vibrations of the structure can be damped with piezoelectric materials and
a passive electrical (shunt) network. The piezoelectric materials convert vi-
bration energy into electrical energy and then dissipate the electrical energy
in the form of joule heating through the passive electrical (shunt) network,
which is also known as passive vibration damping.

The electrical (shunt) network consists of resistors, capacitors and in-
ductors. The network is connected across a pzt transducer, which can be
modeled as a strain controlled voltage source in series with an inherent ca-
pacitance, or a strain controlled current source in parallel with the inherent
capacitance. The pzt transducer alters the stiffness and loss factor of the
system to be attached. It acts as a Tuned Mass Damper (tmd) or tuned
vibration absorber (tva).

It is widely reported [1, 2, 4, 5] that significant amount of vibration is re-
moved when resistor-inductor (rl) or resistor-inductor-capacitor (rlc) shunt
circuits are optimally tuned.

Though our study, we conclude that in order to maximize the vibration
energy to be shunted by the pzt, it is preferred to transfer more energy from
a structure onto the pzt. Simulation and experimental results show that the
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material property of the structure affects the energy transfer between the
structure and the pzt.

2 Equation of motion of a composite beam

The “piezoelectric effect” was first discovered by Pierre Curie and his brother
Jacques in 1880. When a crystal is under pressure, an electrical potential
appears across some of its faces (direct effect). When an electrical field is
applied, mechanical deformation of the crystal occurs (converse effect). The
most common material possessing the piezoelectric effect is Lead-Zirconium-
Titanium (pzt). The piezoelectric effect indicates that there is energy con-
version or transduction from one form to another occurring during the defor-
mation process. For passive vibration shunting with piezoelectric material,
the “direct effect” is used. The piezoelectric material has the linear consti-
tutive relation [

σ
E

]
=

[
Ep −h
−h β

]
·
[
ε
D

]
, (1)

where ε is the mechanical strain matrix of pzt, σ is the mechanical stress
matrix of pzt (Pa), E is the electrical field matrix of pzt (V/m), D is
the electrical displacement matrix of pzt (C/m2), Ep is the elastic modulus
matrix of pzt (Pa), β is the dielectric impermeability matrix of pzt (m/F),
h is the electrical displacement-stress coefficient matrix of pzt (V/m).

In this article, “composite material” refers to a polymeric (epoxy) carbon-
fibre material while “composite beam” refers to beam made of more than one
material. The composite beam shown in Figure 1 is a rectangular beam with
a pzt patch attached.

Euler–Bernoulli beam theory is used to model the composite beam which
means that only bending deformation are considered, shear and rotation
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Figure 1: pzt attached to the composite beam.

deformations are ignored. The potential energy of beam due to bending is

Ub =
1

2

∫
Vb

σ11ε11dVb =
1

2

∫ L

0

EbIb

(
∂2w

∂x2

)2

dx . (2)

The potential energy of pzt due to bending is

Up =
1

2

∫
Vp

(σ11ε11 +DE) dVp

=
1

2

∫ L

0

[
EpIp

(
∂2w

∂x2

)2

+
1

2
h31Ap(hb + hp)D

∂2w

∂x2
+ Apβ33D

2

]
(3)

× [H(x− x1)−H(x− x2)] dx ,

where ε11 is the axial strain in x direction, σ11 is the axial stress in x direction
(Pa), w is the transverse displacement (m), Ib = bh3

b/12 + (z̄ − zb)2Ab is the
area moment of inertia about the neutral axis (m4), Ip = bh3

p/12 + (z̄ −
zp)

2Ap is the area moment of inertia about the neutral axis (m4),

z̄ =

∑n
i=1AiEizi∑n
i=1AiEi

=
AbEbzb + ApEpzp
AbEb + ApEp

is the neutral axis of composite beam (m), andH(x) is the Heaviside function.
The total potential energy is U = Ub + Up . The kinetic energy of beam due
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to bending is

Tb =
1

2

∫ L

0

ρbAb

(
∂w

∂t

)2

dx . (4)

The kinetic energy of pzt due to bending is

Tp =
1

2

∫ L

0

ρpAp

(
∂w

∂t

)2

[H(x− x1)−H(x− x2)] dx . (5)

The total kinetic energy is T = Tb + Tp . According to Hamilton’s principle

δ

∫ t2

t1

(T − U +W ) dt =

∫ t2

t1

(δT − δU + δWf + δWp) dt = 0 , (6)

where δW represents virtual work, δWp is the virtual work due to electrical
displacement, δWf is the virtual work due to applied force

δWp =

∫
Vp

EδD dVp , (7)

and

δWf = δ

∫ L

0

f(x, t)w(x, t) dx . (8)

The motion equation of the composite beam therefore is

EbIb
∂4w

∂x4
+ EpIp

∂4w

∂x4
[H(x− x1)−H(x− x2)]

+ 2EpIp
∂3w

∂x3
[δ(x− x1)− δ(x− x2)]

+EpIp
∂2w

∂x2
[δ′(x− x1)− δ′(x− x2)] + ρbAb

∂2w

∂t2

+ ρpAp
∂2w

∂t2
[H(x− x1)−H(x− x2)]

−h31Ap(hb +
hp
2

)D3[δ
′(x− x1)− δ′(x− x2)] = f(x, t) , (9)
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with boundary conditions

EbIb
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣L
0

= 0⇒ ∂2w

∂x2
= 0 or δ

(
∂w

∂x

)
= 0 ,

EbIb
∂3w

∂x3
δw

∣∣∣∣L
0

= 0⇒ ∂3w

∂x3
= 0 or δw = 0 . (10)

3 Composite beam with parallel RL shunt

networks

According to the mode separation method

w(x, t) =
∞∑
r=1

φr(x)qr(t) ≈
N∑
r=1

φr(x)qr(t) , (11)

where φr(x) satisfies all the boundary conditions, and qr(t) is time function.

Substitute Equation (11) into Equation (9), using Galerkin’s method, the
partial differential equation of Equation (9) is discretized into an ordinary
differential equation as shown below:

EbIb

N∑
r=1

φ(4)
r (x)qr(t) + EpIp

N∑
r=1

φ(4)
r qr(t)[H(x− x1)−H(x− x2)]

+ 2EpIp

N∑
r=1

φ(3)
r qr(t)[δ(x− x1)− δ(x− x2)] + EpIp

N∑
r=1

φ′′r(x)qr(t)[δ
′(x− x1)− δ′(x− x2)](12)

+ ρbAb

N∑
r=1

φr(x)q̈r(t) + ρpAp[H(x− x1)−H(x− x2)]
N∑
r=1

φr(x)q̈r(t)

−h31Ap(hb +
hp
2

)D3[δ
′(x− x1)− δ′(x− x2)]− f(x, t) = ε ; (13)
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minimizing ε by 〈ε, φs〉 = 0 ,∫ L

0

ε(x, t)φs(x) dx = 0 , s = 1, 2, . . . , N (14)

obtains

N∑
r=1

(∫ L

0

[ρbAb + ρpAp[H(x− x1)−H(x− x2)]]φr(x)φs(x) dx

)
q̈r(t)

+
N∑
r=1

(∫ L

0

[EbIb + EpIp[H(x− x1)−H(x− x2)]]φ
′′
r(x)φ′′s(x) dx

)
qr(t)

− h31Ap
β33

(hb +
hp
2

)D3

∫ x2

x1

φ′′s(x)dx =

∫ L

0

f(x, t)φs(x) dx , (15)

where

D3 =
1

β33

(E3 + h31ε11) =
1

β33

(
v(t)

hp
+ h31ε11

)
. (16)

When a parallel rl shunt circuit is connected across the electrodes of the pzt,
the electrical current due to electrical charge generated from the mechanical
stress flows to the rl shunt circuit. According to Kirchhoff’s laws, this is

i(t) = −dQ
dt

= −Sp
dD3

dt
= −Cp

dv(t)

dt
− h31hpCp

dε11

dt
= iL(t) + iR(t) (17)

where Cp = Sp/(β33hp) , Q is the electrical charge of pzt, Sp is the surface
area of pzt. Equation (17) can be rewritten as

iC + iL + iR = −IS , (18)

where iC = Cp
dv
dt

is the electrical current in Cp, where iL and iR are elec-
trical currents in the inductor and resistor of shunt circuit respectively, and
where IS = h31hpCp

dε11
dt

is the electrical current generated due to the me-
chanical stress. The circuit model of Equation (18) is depicted in Figure 2
that represents the parallel rl shunt circuit. The voltage v(t) is obtained
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Figure 2: Equivalent circuit of parallel rl shunt.

from

v(t) =
1

Cp

∫
iCdt = − 1

Cp

∫ (
h31hpCp

dε11

dt
+ iR + iL

)
dt

= − 1

Cp

∫ (
h31hpCp

dε11

dt
+
L0

R0

diL
dt

+ iL

)
dt (19)

= −h31hpε11 −
L0

R0Cp
iL −

1

Cp

∫
iL dt .

Substituting Equation (19) into Equation (16) obtains

D3 = − 1

β33hp

(
L0

R0Cp
iL +

1

Cp

∫
iLdt

)
. (20)

Then Equation (15) becomes

N∑
ri=1

(∫ L

0

[ρbAb + ρpAp[H(x− x1)−H(x− x2)]]φr(x)φs(x) dx

)
q̈r(t)

+
N∑
ri=1

(∫ L

0

[ρbAb + ρpAp[H(x− x1)−H(x− x2)]]φr(x)φs(x) dx

)
qr(t)
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+BLiL +BR

∫
iLdt =

∫ L

0

f(x, t)φs(x) dx , (21)

where

BL =
h31hp(2hb + hp)

2(x2 − x1)

L0

R0

∫ x2

x1

φ′′s(s) dx , (22)

BR =
h31hp(2hb + hp)

2(x2 − x1)

∫ x2

x1

φ′′s(s) dx . (23)

On the other hand, since v(t) = L0
diL
dt

and combining this with Equation (19),
thus

L0
diL
dt

= −h31hpε11 −
L0

R0Cp
iL −

1

Cp

∫
iLdt,

or

L0
diL
dt

+
L0

R0Cp
iL +

1

Cp

∫
iLdt = h31hpz

∂2w

∂x2
, (24)

where strain ε11 has been replaced by −z ∂2w
∂x2 . Integrating both sides of

Equation (24) and considering equation ∂2w
∂x2 =

(∑N
r=1 φ

′′
r(x)

)
qr(t) ,∫

Vp

(
L0
diL
dt

+
L0

R0Cp
iL +

1

Cp

∫
iLdt

)
dVp = h31hp

∫
Vp

z
∂2w

∂x2
dVp ,

or ∫ x2

x1

{
b

∫ hb+hp

hb

(
L0
diL
dt

+
L0

R0Cp
iL +

1

Cp

∫
iLdt

)
dz

}
dx

= h31hp

∫ x2

x1

b

∫ hb+hp

hb

z
∂2w

∂x2
dz dx , (25)

one can have

diL
dt

+
1

R0Cp
iL +

1

L0Cp

∫
iL dt−

h31hp(hb + hp

2
)

(x2 − x1)L0

(
N∑
r=1

∫ x2

x1

φ′′r(x) dx

)
qr = 0 .

(26)
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Equation (21) is written in a concise form as

N∑
r=1

msrq̈r +
N∑
r=1

ksrqr +BLiL +BR

∫
iLdt = fd(t) . (27)

Equation (26) is written as

diL
dt

+ cRiL + cL

∫
iL dt+

N∑
r=1

Φrqr = 0 , (28)

where cR = 1/(R0Cp) and cL = 1/(L0Cp) , respectively,

Φr = −
h31hp(hb + hp

2
)

(x2 − x1)L0

∫ x2

x1

φ′′r(x) dx , (29)

msr =

∫ L

0

[ρbAb + ρpAp[H(x− x1)−H(x− x2)]]φr(x)φs(x) dx , (30)

ksr =

∫ L

0

[EbIb + EpIp[H(x− x1)−H(x− x2)]]φ
′′
r(x)φ′′s(x) dx , (31)

fd =

∫ L

0

f(x, t)φs(x) dx =

∫ L

0

Fd(t)δ(x− xd)φs(x) dx . (32)

4 Numerical example

By making φr(x) = sin(rπx/L) , r = 1, 2, . . . , N , which satisfies all boundary
conditions (Hinged-Hinged), Equations (29), (22) and (23) are

Φr =
h31hp(hb + hp

2
)rπ

(x2 − x1)L

[
cos
(rπx1

L

)
− cos

(rπx2

L

)]
, r = 1, . . . , N,(33)

BL =
h31(hb + hp

2
)L0sπ

LR0

[
cos
(sπx1

L

)
− cos

(sπx2

L

)]
, s = 1, . . . , N,(34)



4 Numerical example C743

BR =
h31(hb + hp

2
)sπ

L

[
cos
(sπx1

L

)
− cos

(sπx2

L

)]
, s = 1, . . . , N. (35)

For s = r ,

mrr =
ρbAbL+ ρpAp(x2 − x1)

2

+
ρpApL

2πr

[
sin

(
2πrx1

L

)
− sin

(
2πrx2

L

)]
, (36)

krr =
(rπ
L

)4
{
EbIbL+ EpIp(x2 − x1)

2

+
EpIpL

2πr

[
sin

(
2πrx1

L

)
− sin

(
2πrx2

L

)]}
. (37)

For s 6= r ,

msr =
ρpApL

π(r2 − s2)

(
r sin

sπx1

L
cos

rπx1

L
− s sin

rπx1

L
cos

sπx1

L

− r sin
sπx2

L
cos

rπx2

L
+ s sin

rπx2

L
cos

sπx2

L

)
, (38)

ksr =
EpIpL

(r2 − s2)π

(
rsπ2

L2

)2 (
r sin

sπx1

L
cos

rπx1

L
− s sin

rπx1

L
cos

sπx1

L

− r sin
sπx2

L
cos

rπx2

L
+ s sin

rπx2

L
cos

sπx2

L

)
. (39)

The matrix form of Equation (27) is

Mq̈ + Kq + BLiL + BRĩL = fd . (40)

When considering internal structural damping, Equation (40) is extended to

Mq̈ + Cq̇ + Kq + BLiL + BRĩL = fd , (41)

where
C = αM + γK .
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The matrix form of Equation (28) is

i̇L + CRiL + CL̃iL + Φq = 0 , (42)

where

ĩL =

∫
iL dt .

Convert Equation (41) and (42) to state space form

ẋ = ASx + BSu ,

y = CSx + DSu , (43)

where

x = [x1 x2 x3 x4]T4N×1 = [q q̇ ĩL iL]
T

4N×1, u = [fd]4N×1,

AS =


0 I 0 0

−M−1K −M−1C −M−1BR −M−1BL

0 0 0 I
−Φ 0 −Γ −Ω


4N×4N

,

BS =


0

M−1

0
0


4N×N

, CS = [C1 0 0 0]1×4N ,

C1 =
[

sin πxm

L
· · · sin Nπxm

L

]
1×N , DS = [0]1×N ,

Γ =


1

CPR1
0

. . .

0 1
CPRN

 ,Ω =


1

CPL1
0

. . .

0 1
CPLN

 ,

Φ =

 Φ1 0
. . .

0 ΦN

 .
Given an aluminium beam and a pzt, where the parameters are
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Beam

Vb = 0.5× 0.025× 0.003 m3, ρb = 2700 Kg/m3,

Eb = 70 GPa, α = 0.2 , γ = 10−7 , xd = 0.125 m.

PZT

Vp = 0.06× 0.025× 0.00025 m3, x1 = 0.095 m, x2 = 0.155 m,

ρp = 7600 Kg/m3, Ep = 70 GPa, h31 = 7.65× 108 V/m,

β33 = 7.33× 107 m/F , Cp =
Sp
β33hp

= 82× 10−9 F.

Shunt circuit components to target the first mode are

L1 = 400 H, L2 = 24.64 H, L3 = 4.846 H,

R1 = 340 kΩ, R2 = 100 kΩ, R3 = 70 kΩ.

Solving the state space Equation (43) with matlab obtains the impulse
responses and frequency response of the composite beam with a force vector
fd = 10−2[1 1 1]T (which is equivalent to have equal point force being applied
at the anti-node of each mode) and vibration measured at xm = L/4 from
origin resulting in C1(r) = sin(rπxm/L) = sin(rπ/4) , r = 1, 2, 3, as shown in
Figure 3. The natural frequencies of the composite beam are approximately
28, 112, and 252 Hz respectively. Figure 3 shows that the vibration amplitude
of the beam is significantly reduced when the inductor of shunt circuit is
tuned to the frequency to be controlled, that is,

Li =
1

(2πfi)2Cp
.

However, the rl shunt control possesses narrowband characteristics which it
is sensitive to the mismatch between the frequency of shunt circuit and the
natural frequency to be controlled. When the shunt circuit is ill-tuned, the
control becomes worse. Figure 4 is the simulation when L1 = 365 H which
gives the control frequency of the shunt circuit about 29 Hz, 1 Hz off the
center frequency of the first mode. The control effect is slightly worse when
compared with that in Figure 3.
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(a) Impulse response

(b) Frequency response

Figure 3: Impulse and frequency responses of composite beam at xm = L/4 ,
L1 = 400 H.
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Figure 4: Shunt circuit off-tuned (when L1 = 365 H)

5 Simulation of passive piezoelectric

vibration shunt with ansys

Efficient vibration shunt control involves determining the optimum size of
pzt patches and location to place them in order to achieve optimal perfor-
mance and minimize cost. However, each pzt patch has to be firmly glued
on the structure before it can take effect. Therefore, the pzt patch becomes
unusable after being glued. Therefore, it will be quite expensive in both
time and resources if experiments alone are carried out. It is desirable to
have some method to determine the optimal size and location of pzt patch
before it is attached to a structure. Since the Finite Element Analysis (fea)
software package ansys has a coupled field capability (solid5 is the 3D cou-
pled field solid element and circu94 is the piezoelectric circuit element), it
has the means to construct a rl electrical shunt network connected across a
piezoelectric patch bonded on a structure to simulate piezoelectric vibration
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shunt control.

The object used for modeling is a 0.5× 0.025× 0.003 m3 aluminum beam
with a 0.05×0.025×0.0005 m3 pzt patch attached. The boundary condition
of the beam is “clamped-free”. The element for modeling aluminum beam is
solid45, a 3D structure solid element. The density and Young’s modulus of
the aluminum beam are ρb = 2700 Kg/m3 and Eb = 66 GPa respectively. The
element for modeling piezoelectric transducer pzt is solid5, a 3D coupled
field solid element. The density and Young’s modulus of the pzt are ρp =
7730 Kg/m3 and Ep = 66 GPa respectively. The element for modeling shunt
circuit component (resistor and inductor) is circu94, a circuit element.

Figure 5 is the ansys model of the structure with pzt attached. A
parallel rl circuit is connected across the electrodes of pzt. The inherent
static capacitance of the pzt measured was about Cp = 31.4 nF.

Figure 6 shows the harmonic analysis of the single mode parallel rl shunt.
The shunt circuit has been tuned individually to target the mode to be
controlled. (a) is the spectrum before shunt, (b)–(d) are the spectra of the
first to third modes after shunt respectively. The graphs show that the
amplitudes of the first to third modes have been reduced by about 84%, 70%
and 80%, (or 16 dB, 10.5 dB, and 14 dB) respectively.

6 ANASYS simulation with different

material properties

The anasys simulation results in Figure 6 show that with the shunt control
the vibration amplitude of aluminum beam at natural frequencies can be
significantly reduced. However, simulation showed that the effectiveness of
the shunt control on beam is dramatically worsened when the beam material
is changed to wood.



6 ANASYS simulation with different material properties C749

Figure 5: Modeling of single mode parallel rl piezoelectric shunt on a
cantilever beam with ansys
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Figure 6: Harmonic analysis of the aluminum beam vibration
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Figure 7: Harmonic analysis of the wooden beam vibration
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Figure 8: Built-up beam with pzt patch attached

Figure 7 displays the vibration spectrum of a wooden beam which Young’s
modulus is equal to Eb = 66 GPa, and density ρb = 553 Kg/m3. The results
show that little amplitude has been reduced at natural frequencies. This is
probably because the Young’s modulus and the density of the wood are much
smaller than that of the pzt ceramic.

7 Built-up beam

In order to improve the efficiency of vibration shunting for a wooden beam
a built-up beam was constructed as shown in Figure 8. The left section is
wooden material, right section is a composite material with Young’s modulus
Eb = 66 GPa, and density ρb = 1500 Kg/m3. The pzt patch was attached
on the top of composite material beam.

Figure 9 is the simulation results of the built-up beam. It shows that the
deduction of vibration amplitude at natural frequency is markedly improved.
The first to third modes were reduced about 48%, 50%, and 80% (or 5.68 dB,
6 dB, and 14 dB) respectively.
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Figure 9: Harmonic analysis of the built-up beam vibration
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8 Experimental results

The piezoelectric vibration shunt experiments were carried on aluminum,
wood and carbon-fibre composite beams respectively. Figures 10–12 show
the time and spectrum results of before and after shunting with the oros
spectrum analyzer. The beam lengths are about 500 mm, widths are between
25–40 mm, and thicknesses are between 2–3 mm. The boundary conditions
are free-clamped. The pzt used is psi-5a4e piezoelectric sheet (T107-A4E-
602) from Piezo Systems. After the shunting process, the reduction in ampli-
tude of vibration is 90% for the aluminum beam (Figure 10), 8% for wooden
beam (Figure 11), and 80% for carbon-fibre composite beam (Figure 12).
The experimental results were predicted by simulation. By using carbon-
fibre composite beam, the vibration reduction efficiency can be greatly im-
proved when compared with the wooden beam since the Young’s modulus
of carbon-fibre composite beam can be chosen to be much closer to that of
the pzt.

9 Conclusions

The use of piezoelectric materials in conjunction with resistor-inductor shunt
circuits can effectively reduce the vibration amplitudes of structures. An ana-
lytical study on the parallel resistor-inductor piezoelectric shunt control using
the Hamilton’s principle and the Galerkin’s method has been presented. The
effectiveness of vibration reduction is related to the optimum size and place-
ment of the piezoelectric transducer and the optimum value of resistors, and
inductors. On the other hand, the experiments are costly and time consum-
ing. It is thus desirable to have a system to be properly simulated before a
final design can be made. This article shows a numerical method of designing
a piezoelectric vibration shunt control system by using Finite Element Anal-
yses. With the help of such numerical methods, designers can have much
more flexibility in designing an optimal control system. Material properties



9 Conclusions C755

(a) Aluminum beam before shunting

(b) Aluminum beam after shunting

Figure 10:
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(a) Wooden beam before shunting

(b) Wooden beam after shunting

Figure 11:
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(a) Carbon-fibre composite beam before shunting

(b) Carbon-fibre composite beam after shunting

Figure 12:
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(Mechanical and physical) of the structure to be controlled can significantly
affect the shunt control ability due to the neutral axis location. There is an
optimal energy transfer ratio from the structure to the pzt for a given ratio
of thickness between the structure and the pzt. The equation of the ratio of
energy transfer has been derived. Simulation and experimental results have
shown the impact of material property variations. Vibration control on the
carbon-fibre beam, in particular, was shown to be very effective using this
technique. The results are corroborated from analytical, experimental and
computational analyses.
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