
ANZIAM J. 47 (EMAC2005) pp.C776–C802, 2007 C776

Fluid drop shape determination by the
Rayleigh–Ritz minimization method
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Abstract

The Rayleigh–Ritz (rr) method is well known as a means of mini-
mizing energy functionals. Despite this, the technique most often em-
ployed in practice for minimizing a functional is the numerical solution
of the Euler–Lagrange (el) equations derived from the energy func-
tional by variational minimization. In this article we employ the rr
method specifically to determine the equilibrium shape of a fluid drop
interface deformed by externally applied surface stresses and compare
the results with numerical solution of the el equations. We give ex-
amples of conditions where the rr method is superior in terms of
simplicity and accuracy to the numerical el solution, as well as con-
ditions under which the method is less reliable.
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1 Introduction

During the past few years there has been growing experimental [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11] and theoretical [12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22], interest in systems where deformable surfaces interact with colloidal
particles in liquids. These systems are important as they commonly appear
in both nature and in technical situations. Practical examples arise in areas
such as biotechnology (involving biological cells, vesicles, emulsions and the
like) and in the pulp and paper industry (for example, with the de-inking of
recycled paper fibres by flotation). The focus of study is on events related
to the interaction between free surfaces of bubbles and other fluid drops
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and solid particles. One core property that must be established for any
quantitative assessment of the effects of interaction is the deformed shape
that the drop adopts. Determination of this shape, through solution of a
non-linear problem, must invariably be achieved numerically. However, it is
desirable to have a simpler, more expedient, though equally accurate means
to determine this quantity. One aim of our continued efforts is the derivation
of a simple, robust and general approach to modeling the shape behavior of
liquid drops as they are stressed by colloidal or other influences.

Here we consider an alternate simple, semi-analytical method and use it
to address a number of free surface problems. Instead of following the tra-
ditional route of numerically solving the Euler–Lagrange equation for this
problem, or deriving approximate solutions of this equation [21, 17, 22],
we tackle the energy minimization directly by means of the Rayleigh–Ritz
method [23]. The desired equilibrium solution is expressed as a sum/series
of appropriately defined basis functions. The series involves a number of
free parameters which are subsequently determined by the condition that
they collectively minimize the free energy functional for the problem. For
three different problems of increasing complexity, we compare the results of
this direct approach against results of the more traditional numerical line
(described in Section 2) and discuss its advantages and disadvantages.

2 Free energy of sessile drop under

gravitational and arbitrary surface stress

The system we consider consists of a fluid drop, deposited on a solid substrate
and interacting with a spherical particle via a given, attractive force law
(see Figure 1a). The system is assumed axisymmetric. That is, we assume
cylindrical symmetry around the z-axis, defined to be perpendicular to the
substrate and extending through the apex of the drop. Axisymmetry implies
that the particle is positioned exactly above the apex. Furthermore, the
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Figure 1: (a) Schematic of the drop-particle interaction system. The extent
of the drop deformation due to the interaction with the spherical particle is
deliberately exaggerated. (b) Schematic of the unstressed sessile drop. The
geometry of the drop profile corresponds to a part of a sphere.
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contact angle, which the drop makes with the substrate is assumed strictly
smaller than 90◦; thus we describe the drop shape by specifying its height, z,
as a function of r, the radius.

The free energy, F , as a functional of the shape, z(r), involves terms from
three physical contributions: a surface energy describing the work done in
creating the surface, proportional to the surface tension, γ; a local surface
stress, σ(r, z), acting over the entire surface arising from the interaction be-
tween the free interface and another body; and a buoyancy term proportional
to the gravitational acceleration, g, and the density difference, ∆ρ. Finally,
assuming incompressibility, the condition of constant volume is enforced by
the fourth term involving a Lagrangian multiplier, Λ. Under a constant con-
tact radius, rc, assumption, the free energy functional is

F = 2π

∫ rc

0

r

[
(γ + σ)

√
1 + z2

r +
g∆ρ

2
z2 + Λz

]
dr , (1)

where zr := ∂z/∂r . By minimizing this expression we determine the profile
shape function, z(r).

To minimize the free energy (1) in the domain of admissible functions, a
subset of the set of non-negative functions over the interval [0, rc] is used. The
admissible functions must be twice differentiable in [0, rc], have zero slope
at the apex, zr|r=0 = 0 , from cylindrical symmetry, and rc must be their
first zero. The Euler–Lagrange variational method applied to equation (1)
gives [20]

(γ + σ)

(
zr√

1 + z2
r

+
rzrr

(1 + z2
r )

3/2

)
+

r√
1 + z2

r

(
σrzr − σz

)
= r

(
g∆ρz + Λ

)
.

(2)
This is a second order non-linear differential equation for z(r), involving
both gravity and surface energy density. This equation has not been solved
analytically; accurate numerical solutions are really the only general recourse.

The surface energy density, γ + σ , is generally a complicated function
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of z(r). However, we simplify matters by taking σ as a function of the single
quantity, D(r, z), being the perpendicular distance between the particle and
the profile (see Figure 1). σ(D) corresponds to the work done in bringing the
particle from infinity to a distance D, against a pressure field, π, due to the
interaction. Taking π(D) as the pressure field between two infinite plates,
we have

σ(D) = −
∫ D

∞
π(D′) dD′ where π(D) = − A

6πD3
.

A is a measure of the strength of the van der Waals surface interaction,
taking values in the range [2 · 10−22, 2 · 10−20] J. The perpendicular distance
between the particle and the profile shape, D(r, z) (see Figure 1a), is defined
by the coordinate pair {r, z(r)}: (D+Rp)

2 = r2 + (zp0− z)2 . Here, Rp is the
radius of the spherical particle and zp0 denotes the height of its center above
the reference level z = 0 (substrate). By the above integral, the effective
local interaction energy is

σ
(
r, z(r)

)
= − A

12π

(√(
zp0 − z(r)

)2
+ r2 −Rp

)−2

.

3 Rayleigh–Ritz determination of sessile

drop shapes

The approximate solution we discuss in this section is based on the Rayleigh–
Ritz method, a technique that tackles the minimization or variation problems
directly [23].

3.1 Incorporation of physical constraints

A number of conditions that must be satisfied by the equilibrium shape
are incorporated directly into the definition of basis functions. The first is
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the constraint of constant volume. We begin with an ansatz of the form
z(r) =

∑N
n=1 anfn(r) , where fn(r) are arbitrarily chosen functions. The

volume condition assuming an axisymmetric drop whose maximum radial
extent is a fixed radius rc, takes the form∫ rc

0

rz(r) dr =

∫ rc

0

r

(
N∑
n=1

anfn(r)

)
dr = V0 .

This represents an equation for a1, in terms of the remaining coefficients.
Explicitly, we have

a1 =
V0∫ rc

0
rf1(r) dr

−
N∑
n=2

an

∫ rc
0
rfn(r) dr∫ rc

0
rf1(r) dr

.

Consequently, the ansatz takes the form

z(r) = a1f1(r) +
N∑
n=2

anfn(r) = y0(r) +
N∑
n=2

anyn(r) , (3)

which explicitly involves the N−1 coefficients a2, . . . , aN , and new functions

y0(r) :=
V0f1(r)∫ rc

0
rf1(r) dr

, yn(r) := −
∫ rc

0
rfn(r) dr∫ rc

0
rf1(r) dr

f1(r) + fn(r) .

y0(r) alone explicitly fulfills the volume condition.

A second constraint is one of either of two options: a fixed contact radius,
z(rc) = 0 and fixed contact angle condition, zr(rc) = − tan θc . In the last
case, θc is fixed by the relative strengths of surface energies and rc is to be
determined. In the first case we have

z(rc) = 0 ⇒
N∑
n=2

anyn(rc) = −y0(rc) .
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For arbitrary basis functions, fn(r), the yn do not necessarily all vanish at rc
for all n. Hence, the above defines a second equation involving all of the
N − 1 coefficients, which is be solved for, say, a2. Provided y2(rc) 6= 0 ,

a2 = −
∑N

n=3 anyn(rc) + y0(rc)

y2(rc)
.

The second constraint thus leads to the new ansatz

z(r) = y0(r) + a2y2(r) +
N∑
n=3

anyn(r) = z0(r) +
N∑
n=3

anφn(r) , (4)

in which we define new functions

z0(r) := y0(r) + a2y2(r) , φn(r) := −yn(rc)

y2(rc)
y2(r) + yn(r) . (5)

These functions now satisfy both the constant volume condition and the
constant contact radius boundary condition for any initial choice of functions.
This process is repeated for each physical constraint one wishes to impose on
the desired solution.

3.2 Energy functional minimization

Explicit use of (4) in the Rayleigh–Ritz method applied to the free energy
functional (1), yields

F
[
z(r)

]
= 2π

∫ rc

0

r

[(
γ + σ

(
r, z(r)

))√
1 + z2

r +
g∆ρ

2
z(r)2

]
dr

=

∫ rc

0

f

(
r,

N∑
i=3

aiφi,
N∑
i=3

aiφi,r

)
dr = F(a3, a4, . . . , aN) . (6)
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Minimization of (6) proceeds through partial differentiation with respect to
the parameters {an}Nn=3 , and results in the system of equations,

∂F
∂an

= 0 , i = 3, . . . , n . (7)

Noting that ∂z/∂an = φn(r) , the partial derivatives of F with respect
to {an}Nn=3 are

∂F
∂an

= 2π

∫ rc

0

r

[
(γ + σ)

zr√
1 + z2

r

∂φn
∂r

+ σzφn
√

1 + z2
r + g∆ρ zφn

]
dr, ,

(8)
where the final expansion (4) is inserted for z(r). Equations (7) are solved
for {an}Nn=3 using the Newton–Raphson method. The multi-dimensional ver-
sion of the Newton–Raphson routine applied to our given problem is

ai+1 = ai −

[(−−→
∂F
∂a
· J−1

)∣∣∣∣∣
an=ai

]
i

,

where
−−−−→
∂F/∂a is the vector gradient of F with respect to the an, and J is the

Jacobian matrix whose components are the second partial derivatives of the
energy, F , with respect to ai and aj,

∂2F
∂aiaj

= 2π

∫ rc

0

r

[(
σzz
√

1 + z2
r + g∆ρ

)
φi(r)φj(r)

]
dr

+ 2π

∫ rc

0

r

[
zrσz√
1 + z2

r

(
φi(r)

∂φj
∂r

+ φj(r)
∂φi
∂r

)
+

γ + σ
3
√

1 + z2
r

∂φi
∂r

∂φj
∂r

]
dr .

(9)

Here and in (8), we used

∂σ

∂an
=
∂σ

∂z

∂z

∂an
= σzφn(r) ,

∂2σ

∂aman
=
∂2σ

∂z2

∂z

∂am

∂z

∂an
= σzzφn(r)φm(r) .
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Actual inversion of the Jacobian and solution for the vector of coefficients {an}
is achieved using a Gaussian elimination scheme. The free energy func-
tional (6), and its various first (8) and second (9) partial derivatives are
explicitly given for rapid evaluation. All integrations are numerically calcu-
lated using the trapezoidal rule.

3.3 Choice of basis functions

The Rayleigh–Ritz method is a fast and manageable method which is, how-
ever, dependent on the choice of functions, fn(r). We shall see that an
appropriate choice of the fn(r) significantly improves the accuracy of the ap-
proximation. In the above discussion and in the numerical implementation,
we implicitly assumed the functions, fn(r), satisfy axisymmetry: ∂fn/∂r = 0
at r = 0 , and will even satisfy the constraint fn(rc) = 0 . Since we speci-
fied a2 in (4), this last requirement is not necessary and we can choose more
general functions. However, to ensure as few expansion coefficients as pos-
sible and save on computation time, it is easier to choose basis functions
that fulfill both these conditions. In the numerical study we implement four
different options:

fn(r) ∈
{
r2n
c − r2n , cos

(
πn

2

r

rc

)
,

1

n
e−n(r/rc)

2

, J0

(
α0n

r

rc

)}
, (10)

referred to as algebraic, trigonometric, exponential and Bessel bases, respec-
tively.

4 Numerical results and discussion

We apply the method described above to three different systems of sessile
drops. In order of increasing physical complexity, the problems we consider
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are as follows. First is a free standing, unstressed drop of known volume
resting on a horizontal substrate. This system alone of the three has an
exact, closed form solution for the optimal shape: the minimizing free surface
in this case is spherical, which provides us with an analytical test of the
Rayleigh–Ritz method. The second problem involves a fluid drop sessile on
a horizontal substrate subject only to the body force of gravity. No exact
analytical solution is known. For tests of accuracy we refer to the solution
obtained by numerical integration of the differential equation (2). Finally, we
consider the problem of a fluid drop, sessile under a gravitational body force,
interacting through an attractive van der Waals force with a spherical particle
of typical colloidal size. The results produced by the Rayleigh–Ritz method
are presented for various numbers of terms (N), basis functions, fn(r), and
initial profiles, z0(r).

4.1 An unstressed sessile drop

It can be verified that the exact solution of the Euler–Lagrange equation
for an unstressed sessile drop of given volume, V0, is a section of a sphere.
Figure 1b shows the relevant geometry. The sphere’s radius is R = (r2

c +
z2
0)/2z0 , in terms of maximum height above the substrate, z0, and contact

radius, rc. The volume for that part of the sphere above the substrate, z = 0 ,
is V0 = π

6
z0(3r

2
c + z2

0) . Solving this third order equation for z0, the only real
root is substituted to solve for the sphere radius, R. Consequently, the sphere
shape is

zsph(r) = z0 −R +
√
R2 − r2 . (11)

This exact solution is used for comparison with the Rayleigh–Ritz approxi-
mation, (4), using various basis functions, fn(r).

In the systems considered below we have no gravity and no interaction.
The physical parameters are then g∆ρ = 0 , γ = 72.8 mN/m, V0 = 25µL
and A = 0 . The prescribed drop radius, rc, is the only variable we vary
in this case and of course the number of terms N involving coefficients, an,
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Figure 2: Convergence of Rayleigh–Ritz drop profiles towards the exact
solution (spherical cap, thick solid line), for increasing amount of correction
terms, N . Profiles are obtained with the exponential basis functions, (10).
The inset shows the difference zsph(r)− zrr(r) . Physical parameters: g∆ρ =
0, γ = 72.8 mN/m, V0 = 25µL, rc = 3.5 mm.

where n = 3, . . . , N . Varying the drop volume does not modify our results
phenomenologically; the volume is therefore kept constant throughout this
discussion.

For an unstressed drop, Figure 2 shows the profiles obtained with the
Rayleigh–Ritz method, for increasing amount of correction terms, using the
exponential basis functions defined in (10). The inset is a plot of the differ-
ence between exact and approximated drop profiles, zsph(r) − zrr(r), where
zrr(r) is the Rayleigh–Ritz solution (4). For all choices of basis functions,
profiles obtained with only one term (N = 3) are in relative poor agreement
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Figure 3: Accuracy of the Rayleigh–Ritz solutions, for all basis func-
tions (10), and increasing amount of terms. The accuracy is characterized
by the volume ∆V , given in percentage of the drop volume, V0. Significance
of the lines and physical parameters like in Figure 2.
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with the exact solution (11). As more terms are added, the series converge to-
wards the sphere section, with the exception of the Bessel function expansion
that seems to converge toward a different profile.

The rate of convergence and accuracy of the solutions depend strongly on
the choice of basis function fn(r). The accuracy of the Rayleigh–Ritz drop
profiles are characterized by the volume enclosed between the exact and the
numerical shape,

∆V := 2π

∫ rc

0

r
∣∣zsph(r)− zrr(r)

∣∣ dr .
For all basis functions (10), Figure 3 illustrates the accuracy of the Rayleigh–
Ritz profiles, in terms of the ratio ∆V/V0, as function of the number of
correction terms, N , and the contact angle, θc. For a prescribed drop volume
and contact radius, the contact angle of the exact solution, θc, is given by
cos θc = 1 − z0/R (see Figure 1b). With all basis functions, the accuracy of
the Rayleigh–Ritz solutions increases as the drop contact radius, rc, increases,
that is, for decreasing contact angles, θc. Similarly, as the number of terms
increases we get better profiles as measured by a decreasing ratio ∆V/V0.

Clearly, for any value of the contact radius, the Bessel function basis,
fn(r) = J0(α0nr/rc) , does not give a good representation of the spherical
profile, no matter how many terms are included in the series (see Figure 3-
iv). As we extend the number of expansion coefficients, the Rayleigh–Ritz
solutions converge toward a limiting profile definitely different from the exact
solution. The volume bounded by the Rayleigh–Ritz predictions and the
spherical cap is relatively large compared with the corresponding values found
with other basis functions. In addition, the values of the coefficients {an}Nn=3

increase rapidly with increasing number of terms, giving rise to problems
in the program for rounding the profile shape (note the incomplete lines in
Figure 3-iv), for N > 4 and θc & 45◦ .

Exponential basis functions, fn(r) = 1
n

exp[−n(r/rc)
2] , generate profiles

that slowly converge towards the exact solution, see Figure 2). Using at least
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Figure 4: Accuracy of the Rayleigh–Ritz solutions for drops under gravita-
tional stress. Significance of the lines like in Figures 2–3. Physical parameters
are γ = 72.8 mN/m, V0 = 100µL, rc = 5.3 mm.

four terms, the ratio ∆V/V0 is of order 0.1%, see Figure 3-iii). However,
this basis suffers the same drawback as the Bessel function basis: for small
contact radii (θc > 65◦), the Rayleigh–Ritz coefficients become very large
and numerical problems appear.

For drops of small to medium contact radii (θc & 35◦), the algebraic
basis functions, fn(r) = r2n

c − r2n , give the most satisfying results. These
rapidly produce accurate profiles compared with the sphere cap solution.
With four or more terms, ∆V/V0 ' 0.01% for low contact angle values.
Large coefficients, however, are generated for some contact radii, while for
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are g∆ρ = 9776 kg/m2s2 (right).
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some values of rc no solution can be found at all, no matter how many terms
are included in the series (see the ”gaps” in the curves in Figure 3-i).

The trigonometric basis functions, fn(r) = cos(1
2
πnr/rc), produce better

profiles with increasing number of terms. Indeed, for large contact radii,
these are the most satisfying functions: the ratio ∆V/V0 drops below 0.01%
for small values of θc, when taking at least four terms into account. This
function choice incidentally produces small, {an}Nn=3 values, that decrease
with increasing number of terms, avoiding numerical complications. This
makes this choice of basis a strong candidate.

4.2 A sessile drop stressed under gravity

For this system we set up the same scenario as in the previous section. The
only change we make to the system is to include a gravitation contribution.
That is, a finite gravity, g, and density difference, ∆ρ, across the liquid-
gas interface. The physical parameters and fixed values for this system are
g = 9.81 m/s2 , γ = 72.8 mN/m, V0 = 100µL and A = 0 , since we assume no
interaction force. The prescribed drop radius, rc, and density difference, ∆ρ,
are the variables we vary in this case, as well as the number of correction
terms, an, where n = 3, . . . , N . Variation of the volume does not lead to
qualitative modifications of our results.

With a gravitational force, increases in density difference result in increas-
ingly flatter drop at the apex. This effect is observed for density differences
∆ρ > 10 kg/m3. The profile shape under a gravitational force is expected
to be below the spherical shape, a fact confirmed using a sufficient number
of terms. Due to the volume condition, successive terms tend to push the
profile out at the edges while making the drop flatter at the apex, as a result
of the influence of gravity.

For a given density difference, ∆ρ, the convergence of the Rayleigh–Ritz
solutions towards the exact solution exhibits similar overall behavior as for
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parameters: A = 10 · 10−21 J, Rp = 100µm, D0 = 20 nm. Significance of the
lines like in Figures 2–3.
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the unstressed drop. However, to obtain a satisfying solution, more cor-
rection terms are necessary because of the additional complication of the
gravitational body force. This is confirmed by a study of the accuracy, as
a function of the contact angle and the density difference, see Figures 4–5.
In terms of the contact angle dependence, the accuracy of the Rayleigh–
Ritz solutions is best with the algebraic basis for low contact angles and the
trigonometric function basis for large contact angles. For a fixed contact
radius, values of the ratio ∆V/V0 increase with the gravitational factor g∆ρ,
implying that, as the effect of gravity increases, more correction terms must
be incorporated to the series to obtain a given level of accuracy. Note that in
the presence of gravity, for all choices of basis functions considered and any
number of correction terms, the Rayleigh–Ritz solutions have the best accu-
racy for drops with a certain contact angle (θc ≈ 25◦ in the case illustrated
in Figures 4–5). This value for the optimal contact angle decreases with
diminishing gravitational effect, and becomes 0◦ in absence of gravitational
stress.

Rayleigh–Ritz solutions are numerically difficult to obtain under the same
conditions as for unstressed drops (see previous subsection); only the trigono-
metric function basis is always reliable. On the other hand, determination of
the exact solution by numerical integration of the differential equation (2) is
troublesome when the contact angle is too small. As a consequence, we have
no exact solutions for drops with θc < 15◦.

4.3 A sessile drop stressed under gravity and
interaction

In this section we consider a drop in air, under the combined influence of
gravity and an attractive van der Waals interaction. The physical parameters
and fixed values for this system are g = 9.81 m/s2, ∆ρ = 997 kg/m3, γ =
72.8 mN/m, V0 = 50µL and rc = 4.9 mm. The spherical particle radius, Rp,
the Hamaker constant, A, and the minimum separation between particle
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and drop, D0, are the variables we vary in this case. We gradually increase
the interaction constant, A, and the particle radius, Rp, to see if and how
it affects the profile shape of the drop and where the extreme limits for the
minimum separating distance,D0, are to be found. The differences in profiles,
zexact(r)− zrr(r) , shown in Figure 7 indicate how small the deformations are
for various minimum distances D0.

The van der Waals attraction is maximal at the drop apex, but affects
the whole drop shape. Under an attractive stress, the drop profile is raised
up around the apex, and pushed in around the edges. When the particle
approaches the drop surface, the apex deformation grows at an exponential
rate. However, the interacting particle cannot be brought arbitrarily close
to the drop surface: below a certain limiting separation, denoted D0,min,
the particle is too close and triggers rupture of the interface. That point
corresponds to the stability limit of the system, where the drop ‘jumps up’
and captures the particle. At larger separations, the drop shape differs only
marginally from the solution without interaction. A significant difference is
only be observed when the particle is close to the stability limit.

The deformation process for decreasing apex separations, D0, is shown in
Figure 6. The thick solid lines are exact solutions, and the thick dashed line
is the profile in the absence of interaction (A = 0 , gravity only). As seen
from the insets, the extent of the deformation due to the van der Waals stress
is very small in comparison with the deformation induced by gravity. Around
the apex, the profile rise is of the order of nanometers. The Rayleigh–Ritz
solutions obtained with the exponential basis functions are also plotted in
Figure 6, for the first four correction terms. At the apex, the magnitude
of these corrections is much larger than the extent of the van der Waals
deformation itself. For a fixed separation close to the limit, D0,min, we show
in Figure 7 the convergence of Rayleigh–Ritz profiles as a function of number
of terms. For the bases considered, it is necessary to include at least 10 terms
in the Rayleigh–Ritz series in order to reach the level of detail typical of the
van der Waals deformation. The incorporation of a fair number of correction
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terms is thus necessary to obtain a solution that reliably reproduces the effect
of the interaction around the apex.

The small deformation and its slow growth upon particle approach lead
to drop shapes very close to those obtained for a simple gravitational stress.
Even for large particle radii, Rp, or large Hamaker constants, A, we observe
small interaction induced profile differences. If sufficiently large, the drop
radius, rc, and density difference, ∆ρ, do make the drop more compact and
stable. This gives rise to small profile absolute changes due to interaction.
Since the particle draws up the drop surface by means of the attractive
interaction, increasing the density difference, ∆ρ, results in smaller profile
changes and gives rise to more squat, heavier and stable drops.

In varying the separation D0, the Rayleigh–Ritz solutions and the ra-
tio ∆V/V0 remain almost constant. The accuracy is reasonable and compa-
rable to those for drops set under gravity only. However, in contrast with
the discussion of Figures 6–7, accuracy in terms of the whole, macroscopic
drop volume, V0, is not an appropriate measure considering the small scale
of the van der Waals deformation.

For values of D0 below the stability limit, D0,min, numerical problems
appear and it is in principle impossible to find Rayleigh–Ritz solutions. Using
this as a criterion to detect the limit, in Figures 8–9 we compare the limiting
separations, D0,min, found for the Rayleigh–Ritz solution, with the limits for
the full numerical solution of (2)

Physically, the minimum distance of closest approach, D0,min, becomes
smaller for decreasing particle radius and Hamaker constant. That is, a small,
weakly interacting spherical particle can be placed closer to the surface of
the drop without causing the drop surface to rupture. We may find that we
may need to increase the particle radius or Hamaker constant in order to
induce a sufficient interaction to significantly affect the drop surface.

The limits predicted by use of the Rayleigh–Ritz solutions depend un-
fortunately on the number of terms, N . However, the physical trends, in
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term of dependence on Hamaker constant and particle radius, are respected.
Moreover, with the notable exception of the Bessel function basis using only
one term, we obtain values of D0,min that closely agree with the exact limiting
separation. It is one of our aims in future work to improve the detection of
the stability limit.

5 Overall summary

The Rayleigh–Ritz method obtains approximate solutions for a sessile drop
under various conditions of stress. We made use of an ansatz that takes
care of the basic conditions of substrate contact and constant volume con-
dition, as well as the boundary condition of constant contact radius. The
solutions were compared with full numerical solutions of the Euler-lagrange
equation, (2), and characterized in terms basis function choice and number
of terms. In general, the macroscopic accuracy is very good with just a few
correction terms, and the Rayleigh–Ritz method provides a fast and reliable
way of determining drop shapes. For systems including interaction with a
particle, more correction terms must by taken into account to capture the
small deformation induced by the van der Waals attraction; only then are
solutions accurate at the scale characteristic of the interaction. The limiting
separation, D0,min, can also be determined for any particle geometry and in-
teraction strength. The results are, in general, in good agreement with the
physical behavior and accurate numerical limiting values.
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