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Mathematical analysis of the effect of tectonic
stress on the stability of underground tunnels
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Abstract

We present a no-tension elastic-plastic model and a numerical
method for analysing the stability of underground tunnels. The gov-
erning equations include equations of motion and a nonlinear consti-
tutive equation. A finite element numerical scheme is developed to
solve the problem taking into account the presence of tectonic stresses
in rock masses. The numerical scheme is then used to study the ef-
fect of the orientation and magnitude of the tectonic stresses on the
distribution of stresses and yielding zones around the tunnels.

∗Dept. of Mathematics and Statistics, Curtin Univ. of Tech., WA, Australia.
mailto:yhwu@maths.curtin.edu.au
†Dept. of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand.

mailto:scbww@mahidol.ac.th
‡School of Resources and Civil Engineering, Northeastern University, China.
See http://anziamj.austms.org.au/V47EMAC2005/Hon for this article, c© Austral.

Mathematical Soc. 2007. Published July 18, 2007. ISSN 1446-8735

mailto:yhwu@maths.curtin.edu.au
mailto:scbww@mahidol.ac.th
http://anziamj.austms.org.au/V47EMAC2005/Hon


Contents C859

Contents

1 Introduction C859

2 Constitutive Equations C860

3 Boundary value problem and numerical scheme C863

4 Numerical investigation C864

5 Conclusions C870

References C871

1 Introduction

For the safety and efficiency of mining operations, it is important to analyse
the behaviour of rock masses around underground tunnels and slopes during
mining operations, and to recommend required course of actions based on the
predictions. The course of actions may involve the installation of specified
support systems and the adoption of a particular excavation sequence.

Over the last few decades, great effort has been made worldwide to con-
struct proper mathematical models to study the stability of underground
tunnels under various geo-mechanical and operational conditions. Various
numerical methods such as the finite element method, the boundary ele-
ment method and the limit equilibrium method have been widely used to
simulate the behaviour of rock masses around underground tunnels during
mining operations [1, 3, 5, 7, 8, 9, 10, 11, 12, 14]. As rock mass is one of the
most complex engineering materials and the stability of mine structures are
generally determined by many factors, predictions of the stability of mine
structures such as underground tunnels are extremely complicated. To pro-
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duce accurate predictions for a particular case, it is essential to construct
a proper constitutive model for the rock mass and take into account all ge-
omechanical conditions such as the orientation and magnitude of tectonic
stresses.

In Western Australia, intact rock materials in most mines are fairly strong
but rock masses are heavily jointed, faulted and are subjected to very high
tectonic stresses [2, 6]. For these kinds of rock masses, rock failure may
occur by tension or plastic yielding or combination of both forms. If the rock
mass fails by tension, the tensile strength in the tension failure zone becomes
zero and the stresses are transferred to other places. Thus, to accurately
describe the stability of the underground tunnels, it is necessary to model
the heavily jointed rock mass as a no-tension elastic-plastic material. It
is also important to consider the effect of tectonic stresses on stability of
the tunnels. In this article, we construct a set of constitutive equations
capable of simulating the no-tension behaviour and plastic yielding of the
rock masses based on our previous work on granular materials [13], and then
use the model to analyse the effect of tectonic stresses on the stability of the
tunnels. In Section 2, the no-tension elastic-plastic constitutive equations for
the rock masses are presented. In Section 3, the underlying boundary value
problem is presented together with a numerical method for the solution of
the problem. In Section 4, numerical results are presented to demonstrate
the effect of tectonic stresses on the stability state of the rock masses around
the underground tunnels.

2 Constitutive Equations

The rock mass considered is assumed to be a no-tension elastic-plastic con-
tinuum which yields according to Drucker–Prager yield criterion and permits
no tension, thus

F p(σ) = ηI1 +
√
J2 −K = 0 , F t = σi = 0 , (1)



2 Constitutive Equations C861

where F p and F t are the Drucker–Prager yield criterion [4] and the tensile
failure criterion, respectively; I1 and J2 are the first invariant and the second
invariant of the deviatoric stress tensor, respectively; σi is the principal stress
component; and η and K are the materials constants determined by the
angle of internal friction ϕ and the cohesion strength c of the material. The
Drucker–Prager yield criterion in principal stress space is a right circular
cone equally inclined to the principal stress axes as shown in Figure 1, and
the no-tension condition cuts off all parts of the cone for which any principal
stress is positive. The remaining part of the cone is a convex body as shown
in Figure 1 and we refer to it by OELA. Hence, the yield surface is the
surface of the convex body OELA and all possible stress states lie on or
inside the surface. The yield state depends on the location of the stress state
point, and in this analysis the stress states are classified into four modes:
(a) elastic state for which F p < 0 and F t < 0 , corresponding to the regime
inside the convex body OELA; (b) elastic-plastic state for which F p = 0 and
F t < 0 , corresponding to the regime on the Drucker–Prager cone surface of
the convex body OELA but not including the line formed by the intersection
with the tensile cut-off planes; (c) elastic-tensile failure state for which F p < 0
and F t = 0 , corresponding to the regime on the tension cut-off planes but
excluding the intersection line with the Drucker–Prager cone; (d) elastic-
plastic tensile failure state for which F p = 0 and F t = 0 , corresponding
to the intersection line between the Drucker–Prager cone surface and the
tension cut-off planes.

As any of the stress states (a)–(c) can be considered as a special case
of (d), in the following, we first present the constitutive relation in (d) in de-
tail. This derivation is based on the decomposition of the total elastic-plastic
strain increment dε into an elastic component dεe, a plastic component dεp

and a component due to tensile yielding dεt, that is

dε = dεe + dεp + dεt . (2)

The elastic strain increment dεe is simply related to the stress increment dσ
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Figure 1: No-tension Drucker–Prager yield surface.

by Hooke’s law
dεe = D−1

e dσ , (3)

where De is the usual material elasticity matrix. Both the plastic strain
increment dεp and the tensile failure related strain increment dεt are assumed
to obey the associated plastic flow rule, thus

dεp =

{
λp

∂F p

∂σ , if F p ≥ 0 ,
0 , otherwise,

dεt =

{
λt

∂F t

∂σ , if F t ≥ 0 ,
0 , otherwise,

(4)

where λp and λt are proportional constants. Following the procedure of Wu
& Schmidt [13], we have

dσ =

(
De −

Dem(mT − αt)De

(mT − αt)Dem
− Den(nT − αp)De

(nT − αp)Den

)
dε

= [De −Dt −Dp]dε = [De −Dn]dε = Ddε , (5)

where

αp =
nT DemmT

mtDem
, αt =

mT DennT

ntDen
, m =

∂F p

∂σ
, n =

∂F t

∂σ
, (6)
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Dn =


0 , elastic state,
Dp , elastic-plastic state,
Dt , elastic-tensile failure state,
Dp + Dt , elastic-plastic-tensile failure state.

(7)

3 Boundary value problem and numerical

scheme

From the principles of continuum mechanics, the stress and displacement field
in the rock masses are governed by the following boundary value problem,

∂σji

∂xj

+ fi = 0 in Ω , (8)

εij(u) =
1

2
(ui,j + uj,i) in Ω , (9)

σij = Dijrsεrs in Ω , (10)

ui = 0 on ∂Ω1 , (11)

σijnj = t̄i on ∂Ω2 , (12)

where we use the index notation with repeated literal indices representing
summation over the index range, ∂Ω = ∂Ω1 ∪ ∂Ω2 is the boundary of Ω with
∂Ω1 representing the fixed boundary and ∂Ω2 representing the prescribed
stress boundary, σ = σij and u are the stress tensor and displacement vector
respectively, D = Dijrs denotes the constitutive matrix as defined in Sec-
tion 2, fi is the body force and t̄i is the surface traction on ∂Ω2 which is
related to the virgin stress field for the excavation problem.

The variational boundary value problem corresponding to the above bound-
ary value problem is as follows. Find u ∈ V such that

a(u,v) = L(v) for all v ∈ V , (13)
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where

a(u,v) =

∫
Ω

(Bv)T D(Bu) dΩ , L(v) =

∫
Ω

vT f dΩ +

∫
∂Ω2

vT t̄ ds

V = {v | v ∈
[
H1(Ω)

]2
, v = 0 on dΩ1} , B =

 ∂
∂x

0
0 ∂

∂y
1
2

∂
∂y

1
2

∂
∂x

 .
The Galerkin finite element procedure generates the discretised system of
equations

KU = F , (14)

where K = [kij] and F = [fi] with

kij = a(Φi,Φj) , fi = L(Φi) ,

in which {Φ}Ni=1 are the basis functions of V.

4 Numerical investigation

To analyse the effect of tectonic stresses on the stability of underground
tunnels, we consider the excavation of two underground tunnels under plane
strain condition as shown in Figure 2. The finite element mesh used in the
analysis is shown in Figure 3.

To model the excavation process of a tunnel, the interaction between the
unexcavated rock in the tunnel with its surrounding is replaced by an equiv-
alent surface traction condition as show in Figure 4. This surface traction
is then incrementally removed from the system to model the excavation pro-
cess. The effect of removing f from the system is equivalent to applying a
surface traction with the same magnitude but in the opposite direction in
the system.
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Figure 2: Computational region.
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Figure 3: Finite element mesh.

Figure 4: Virgin stress on the tunnel boundary



4 Numerical investigation C867

The virgin stress field is taken to be

σ2 = −γH , σ1 = −(σT +
1

2
γH) , (15)

where γ = 28 KN/m3, H is the depth from the ground surface, σT denotes
the tectonic stress, σ1 is the maximum principal stress which is inclined at
an angle α to the horizontal as shown in Figure 2. In this study, we consider
the effect of the magnitude of σT and the effect of the angle α on the stability
state of the rock mass around the tunnels. The value of σT is taken to be 0,
1.5 MPa, 3 MPa, 6 MPa, while the value of α is taken to be 0◦, 5◦, 10◦ and 15◦.
Other system parameter values are: Young’s modulus E = 6.9 × 105 MPa,
Poisson ratio ν = 0.25 , cohesion = 2.0 MPa, internal friction angle = 23◦

and the tensile strength = 0.1 MPa.

Figure 5 shows the distributions of maximum principal stresses versus
distance from the tunnel along the line AB as shown in the figure. A signif-
icant relaxation of stress occurs near the edge of the tunnels. The angle α
slightly affects the magnitude of the stresses along the examined locations.

The contour plots in Figures 6 and 7 show the distributions of the prin-
cipal stresses around the tunnels for σT = 1.5 MPa and 6 MPa respectively.
The angle α affects the distribution of maximum principal stresses very sig-
nificantly. Compared with the results for α = 0 , the maximum principal
stresses for α = 15 are larger. The high compressive stress zone for α = 15 is
located near the left corner of the roof and the right corner of the floor. By
comparing the results in Figures 6 and 7, the magnitudes of the maximum
principal stresses increase dramatically with increase in the tectonic stress.

Figure 8 shows the distribution of maximum principal stress in the rock
around the left tunnel. For α = 15 , a higher concentration of compressive
stress occurs near the top left corner of the tunnel. This indicates that more
support will be needed at this location.
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Figure 5: Maximum Stress distributions along AB.
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Figure 6: Maximum Stress with σT = 1.5 for (a) α = 0 , (b) α = 15 .

Figure 7: Maximum Stress with σT = 6 for (a) α = 0 , (b) α = 15 .
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Figure 8: Distribution of Maximum principal stress around the tunnel

5 Conclusions

A finite element scheme based on the no-tension elastic-plastic constitutive
model has been developed for the analysis of stress distribution and stability
of rock masses around underground tunnels. Numerical investigations using
the model show that the magnitude and orientation of tectonic stresses have
significant effect on the distribution of stresses around the tunnels.
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