References

  • D. S. Dandy and L. G. Leal. Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers. J. Fluid Mech., 208:161--192, 1989. doi:10.1017/S0022112089002818
  • M. R. Davidson and M. Rudman. Volume-of-Fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow. Numer. Heat Trans., Part B, 41(3/4):291--308, 2002. doi:10.1080/104077902753541023
  • M. R. Davidson and G. W. Stevens. Mass transfer from deforming drops rising in a liquid column. Proc. International Solvent Extraction Conference, ISEC'05, pp. 1684--1693, 2005.
  • M. A. Drumright-Clarke and Y. Renardy. The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids, 16(1):14--21, 2004. doi:10.1063/1.1628232
  • C. D. Eggleton, Y. P. Pawar and K. J. Stebe. Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech., 385:79--99, 1999. http://journals.cambridge.org/action/displayAbstract?aid=14819
  • A. J. James and J. Lowengrub. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys., 201:685--722, 2004. doi:10.1016/j.jcp.2004.06.013
  • Y. W. Kruijt-Stegeman, F. N. van de Vosse and H. E. H. Meijer. Droplet behavior in the presence of insoluble surfactants. Phys. Fluids, 16(8):2785--2796, 2004. doi:10.1063/1.1756168
  • J. Lee and C. Pozrikidis. Effect of surfactants on the deformation of drops and bubbles in Navier-Stokes flow. Computers and Fluids, 35:43--60, 2006. doi:10.1016/j.compfluid.2004.11.004
  • V. G. Levich and V. S. Krylov. Surface-tension-driven phenomena. Annu. Rev. Fluid Mech., 1:293--316, 1969. doi:10.1146/annurev.fl.01.010169.001453
  • X. Li and C. Pozrikidis. The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech., 341:165--194, 1997. http://journals.cambridge.org/action/displayAbstract?aid=13511
  • I. B. Bazhlekov, P. D. Anderson, and H. E. H. Meijer. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid and Interface Science, 298:369--394, 2006. doi:10.1016/j.jcis.2005.12.017
  • Y-C Liao, E. I. Franses and O. A. Basaran. Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids, 18:022101-1--022101-21, 2006. doi:10.1063/1.2166657
  • Y. Pawar and K. J. Stebe. Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids, 8(7):1738--1751, 1996. doi:10.1063/1.868958
  • Y. Y. Renardy, M. Renardy and V. Cristini. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio. Eur. J. Mech. B/Fluids, 21:49--59, 2002. doi:10.1016/S0997-7546(01)01159-1
  • Y. Rimon and S. I. Cheng. Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys. Fluids, 12(5):949--959, 1969. doi:10.1063/1.2163685
  • M. Rudman. A volume tracking method for incompressible multifluid flows with large density variations. Int. J. Numer. Meth. Fluids, 28:357--378, 1998. doi:10.1002/(SICI)1097-0363(19980815)28:2<357::AID-FLD750>3.0.CO;2-D
  • R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech., 31:567--603, 1999. doi:10.1146/annurev.fluid.31.1.567
  • H. A. Stone and L. G. Leal. The effects of surfactants on drop deformation and breakup. J. Fluid Mech., 220:161--186, 1990. doi:10.1017/S0022112090003226
  • P. M. Vlahovska, M. Loewenbery and J. Blawzdziewicz. Deformation of a surfactant-covered drop in linear flow. Phys. Fluids, 17:103103-1--101103-18, 2005. doi:10.1063/1.2112727
  • M. S. Borgas and J. B. Grotberg. Monolayer flow on a thin film. J. Fluid Mech., 193:151--170, 1988. doi:10.1017/S0022112088002095
  • J. M. Boulton-Stone. The effect of surfactant on bursting gas bubbles. J. Fluid Mech., 302:231--257, 1995. doi:10.1017/S0022112095004083
  • J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modelling surface tension. J. Comput. Phys., 100:335--354, 1992. doi:10.1016/0021-9991(92)90240-Y




Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.