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Abstract

The problem of a bundled transmission line attached with many
spacer dampers is formulated by considering the conductor as a con-
tinuous system. The formulation results in a complex transcendental
eigenvalue problem (tevp), which presents several numerical difficul-
ties. Some approaches towards solving the tevp and their respective
difficulties in getting the solutions are discussed in detail. The so-
lution of the tevp gives the necessary input data for applying the
energy balance, which is used in order to obtain the actual vibration
amplitudes of the transmission line conductors.
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1 Introduction

In high voltage power transmission lines the use of bundled conductors is
very common. A conductor bundle consists of multiple (two to eight) sub-
conductors. It is necessary to maintain a certain distance between the sub-
conductors for electrical reasons. Spacers at regular intervals of approxi-
mately 40 m to 50 m are used for this purpose. Bending strains produced at
the spacer clamps due to aeolian vibrations, which take place in the frequency
range of 3 to 50 Hz [1], are not desirable. Therefore, the joints between spacer
arms and spacer frame are made of resilient material so as to damp out the
vibrations. Such a spacer is named a spacer damper. Figure 1 shows spacer
dampers corresponding to different number of sub-conductors.
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(a) (b)

(c)

Figure 1: Typical spacer dampers (courtesy of Ribe Electrical Fittings
GmbH): (a) Twin bundle; (b) Triple bundle; and (c) Quad bundle.
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Mathematical models are necessary for the computation of vibrations of
bundled conductor attached with many spacer dampers, for studying the
efficiency of damping measures. The energy balance principle [2, 3] is well
established for estimating the vibrations of single conductor transmission
lines. However, modifications are needed to use it for bundled conductors.
In the standard form of the energy balance principle, the complex eigenvalue
problem (evp) is solved first, to get system frequencies and the corresponding
mode shapes. In the second step, the energy input from the wind is equated
with the energy dissipated due to conductor’s self damping and that due
to external damping devices (for example, Stockbridge damper and spacer
damper) in order to get the actual vibration amplitudes for each mode.

Modeling of transmission line as a continuous system leads to a transcen-
dental system matrix, having infinitely many eigenvalues. For applying the
energy balance principle, one has to obtain eigenvalues of the system matrix
in the frequency range of interest (that is, 3 to 50 Hz for aeolian vibrations).
In the case of bundled conductors attached with spacer dampers, the system
matrix shows poor numerical behavior. Thus, many eigenvalues are missed
when conventional methods are used to solve this transcendental evp. The
prime reason for poor numerical behavior of the system matrix is the large
range in the order of magnitude of its elements.

We describe different methods for obtaining the solution of the transcen-
dental evp for bundled conductors. The problem of bundled conductors with
many spacer dampers is formulated first. The form of the system matrix
shows the reasons behind its poor numerical behavior. Different methods for
solving this transcendental evp are discussed. A new method, named Con-
tinuous Spectrum Approach, has been developed for getting an engineering
solution of such evp for bundled conductors. One representative example
problem is solved for the validation of this approach. Note that besides
vortex excited oscillations, many other types of vibrations are possible in
bundled conductors. However, they are not the subject of this article.
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Figure 2: Schematic diagram of quad bundle attached with N similar spacer
dampers

2 Modeling of a bundled conductor system

2.1 Basic configuration

Consider a conductor bundle consisting of M subconductors. In the current
work M is taken as four, and hence the quad spacer dampers will be con-
sidered for the modelling. N similar spacer dampers are attached to it as
shown in Figure 2. Each spacer damper has M arms. The spacer dampers
are placed at x = ln where n = 1, 2, 3, . . . , N , from the left end. The spac-
ers divide the total span of length L, into N + 1 subspans of corresponding
lengths, ∆l1, ∆l2, . . . , ∆lN+1.

2.2 Modeling the conductor and the boundary
conditions

We make the following assumptions to simplify the formulation:
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Figure 3: Forces acting at the clamp of a spacer damper

1. The sag to span ratio is small so that the sag can be neglected.

2. The bending stiffness EI of the conductor is disregarded because of√
EI/T � λ/(2π). The conductor is considered as a string.

3. The conductors are assumed to be clamped at the span ends.

4. The bundle vibrates in one of its eigenmodes and exhibits synchronous
motion.

Although the excitation due to aeolian vibration is prominently in the
vertical direction, the presence of spacer dampers complicates the conductor
motion. Hence, transverse displacements of conductor in both, the vertical
and the horizontal directions have to be considered. The transverse motion
of the conductor in the vth subspan (v = 1, 2, 3, . . . , N + 1) is expressed by
the wave equation

ρAẅm,v(x, t)− Tmw′′m,v(x, t) = 0 , m = 1, 2, 3, . . . , 2M , (1)

where ρA is the unit mass of the conductor, Tm is the conductor tension
and m represents the plane of motion of the conductor. wm,v(x, t) repre-
sents the transverse displacement of the conductor in mth direction and in
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vth subspan, at a location x and a time instant t. In (1) and in all coming
equations (˙) represents the derivative with respect to time and ( )′ repre-
sents the derivative of a quantity with respect to space. Odd values of m
correspond to the horizontal displacement and even values correspond to the
vertical displacements (refer to Figure 2). Since the conductors are clamped
at both ends, the displacements are zero at the supports, that is,

wm,1(0, t) = 0 , (2)

wm,N+1(L, t) = 0 . (3)

Equations (1–3) define a boundary value problem. For the sake of conve-
nience, we consider new subspan coordinates xv, which are defined as

xv = x− lv−1 , 0 < xv < ∆lv , (4)

with l0 = 0. By separating the space and time variables as

wm,v(xv, t) = Wm,v(xv) exp st , (5)

and substituting in Equation (1), we get the solution in the form

Wm,v(xv) = Am,v exp

(
sxv
cm

)
+Bm,v exp

(
−sxv
cm

)
, (6)

where Am,v and Bm,v are integration constants, and cm =
√
Tm/ρA is the

wave velocity in mth direction. Substituting this solution in the boundary
conditions (2, 3) gives

Am,1 +Bm,1 = 0 , (7)

Am,N+1 exp

(
s∆lN+1

cm

)
+Bm,N+1 exp

(
−s∆lN+1

cm

)
= 0 . (8)
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2.3 Incorporating the spacer damper into model

Figure 3 represents the nth spacer damper of Figure 2 with the forces acting
at the clamp. The Effective clamp width 2b is the sum of the physical clamp
width and twice of the characteristic length lchar of the conductor due to
bending (where lchar =

√
EI/T [2, 3]). In this figure only one of the four

arms is shown attached to the central frame via a viscoelastic joint at the
point P . The forces in the directions transverse to the conductor are denoted
by F−m,n or F+

m,n+1, m = 1, 2, 3, . . . , 2M and n = 1, 2, 3, . . . , N . Here, ( )+

and ( )− show whether the point of interest is in positive or in negative
x-direction. The forces in the axial direction of the conductor are denoted
by gj,n, j = 1, 2 and n = 1, 2, 3, . . . , N .

The force and velocity vector at the nth spacer damper, as shown in
Figure 3, are

Fn(t) =



F−1,n
F−2,n
F+

1,n+1

F+
2,n+1

F−3,n
F−4,n

...
F+

2M−1,n+1

F+
2M,n+1


, ẇn(t) =



ẇ−1,n(∆ln − b, t)
ẇ−2,n(∆ln − b, t)
ẇ+

1,n+1(b, t)
ẇ+

2,n+1(b, t)
ẇ−3,n(∆ln − b, t)
ẇ−4,n(∆ln − b, t)

...
ẇ+

2M−1,n+1(b, t)
ẇ+

2M,n+1(b, t)


, (9)

and they are expressed as

Fn(t) = <[F̂n exp st] , ẇn(t) = <[ ̂̇wn exp st] . (10)

Here [̂] shows the amplitude of the respective quantity and b is sum of
half the physical clamp width of the spacer damper and the characteristic
length of the conductor due to bending. In modeling of bundled conductors,
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the effect of spacer dampers is incorporated by mean of their impedance
matrices Z(s), which are obtained by considering the mass, geometric and
damping properties of the spacer dampers [4]. In doing so, it is treated as a
multi-body system with linear elastic joints (for example, four arms and the
central frame of a quad spacer are treated as five interconnected rigid bodies).
The formulation results in a square impedance matrix, elements of which
are functions of the frequency of conductor vibration [4]. The impedance
matrix Z(s), is of size 4M × 4M , which relates the 4M velocities at the
clamps to the 4M transverse forces acting at the clamps. Four transverse
forces acting at each clamp can be seen in Figure 3. The amplitudes F̂n

and ̂̇wn are related to each other through

F̂n = Z(s) ̂̇wn , n = 1, 2, 3, . . . , N . (11)

Anderson & Hagedorn [4] describe the process of obtaining Z(s), which
will be directly adopted here and Z(s) is assumed to be known beforehand
in this article. The forces at the clamp ends of any spacer damper will be in
equilibrium with the transverse components of tensions on respective sides
of the clamp

F−m,n(t) = −Tmw′m,n(∆ln − b, t) , (12)

F+
m,n+1(t) = Tmw

′
m,n+1(b, t) . (13)

Substituting for wm,n from Equation (5) and (6) gives

F̂−m,n = −Tms
cm

[
Am,n exp

(
s∆ln
cm

)
exp

(
−sb
cm

)
−Bm,n exp

(
−s∆ln
cm

)
exp

(
sb

cm

)]
, (14)

F̂+
m,n+1 =

Tms

cm

[
Am,n exp

(
sb

cm

)
−Bm,n exp

(
−sb
cm

)]
. (15)
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Taking ξ±m(s) = exp
(
± sb
cm

)
, χ±m,n = exp

(
± s∆ln

cm

)
, the expressions for

forces and velocities at the clamps are

F̂−m,n = −Tms
cm

[
Am,nχ

+
m,nξ

−
m −Bm,nχ

−
m,nξ

+
m

]
, (16)

F̂+
m,n+1 =

Tms

cm

[
Am,n+1ξ

+
m −Bm,n+1ξ

−
m

]
, (17)

and

̂̇wm,n∣∣∣
xn=∆ln−b

= s
(
Am,nχ

+
m,nξ

−
m +Bm,nχ

−
m,nξ

+
m

)
, (18)

̂̇wm,n+1

∣∣∣
xn+1=b

= s
(
Am,n+1ξ

+
m +Bm,n+1ξ

−
m

)
. (19)

Equations (16, 17) express the forces as a product of tension and slope,
and Equation (11) expresses them as a product of the velocity and the
impedance. Equating these two set of equations gives us 4MN equations
as explained below. For explanation we consider only the first element of the
force vector from Equation (11),

F̂−1,n = {Z1,1 Z1,2 . . . Z1,4M} ̂̇wn , (20)

the same element of the force vector from Equation (16) is

F̂−1,n = −T1s

c1

(
A1,nχ

+
1,nξ

−
1 −B1,nχ

−
1,nξ

+
1

)
. (21)

Equating the right hand sides of Equations (20, 21) and rearranging gives

0 = A1,nχ
+
1,nξ

−
1

(
Z1,1 +

T1

c1

)
+B1,nχ

−
1,nξ

+
1

(
Z1,1 −

T1

c1

)
+ (A2,nχ

+
2,nξ

−
2 +B2,nχ

−
2,nξ

+
1 )Z1,2

+ (A1,n+1χ
+
1,n+1ξ

−
1 +B1,n+1χ

−
1,n+1ξ

+
1 )Z1,3 (22)

+ (A2,n+1χ
+
2,n+1ξ

−
2 +B2,n+1χ

−
2,n+1ξ

+
1 )Z1,4
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...

+ (A2M,n+1χ
+
2M,n+1ξ

−
2M +B2M,n+1χ

−
2M.n+1ξ

+
2M)Z1,4M .

Corresponding to each spacer we will have 4M such equations. These
4MN equations for N spacers and the 4M equations from boundary condi-
tions at the span ends in (7, 8) result in a transcendental evp:

J(s)a = 0 , (23)

where

a = 〈A1,1, B1,1, A2,1, B2,1, . . . , A2M,1, B2M,1, . . . ,

A1,v, B1,v, A2,v, B2,v, . . . , A2M,v, B2M,v, . . . ,

A1,N+1, B1,N+1, A2,N+1, B2,N+1, . . . , A2M,N+1, B2M,N+1〉T (24)

and the matrix

L Due to left boundary (2M × 4M)�

S1

S2

. . . . . . . . .
Sn

Due to nth spacer (4M × 8M)

? . . . . . . . . .
SN

RDue to right boundary (2M × 4M)-

;

�

�

�

�

J(s) =

where L and R are the matrices of size 2M × 4M and S1,S2, . . . ,Sn are of
size 4M ×8M . The elements of matrices L, Sn and R are shown below. The
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matrix L is due to left homogeneous boundary conditions

L =



1 1 0 0 . . . 0 0 0 0
1 1 0 0 . . . 0 0 0 0
0 0 1 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 1 0 0
0 0 0 0 . . . 0 0 1 1


, (25)

matrix Sn is a complex matrix due to nth spacer damper:

Sn = [P1,n P2,n · · · Pp,n · · · Q3,n Q4,n · · · Qq,n · · · ] , (26)

for all p = 1, 2, 5, 6, 9, 10, . . . , (4M − 3), (4M − 2),

for all q = 3, 4, 7, 8, 11, 12, . . . , (4M − 1), 4M ,

where

Pp,n =


χ+
p,nξ

−
p



“
Z1,p + T1

c1
δ1p

”“
Z2,p + T2

c2
δ2p

”
Z3,p

Z4,p“
Z5,p + T5

c5
δ5p

”“
Z6,p + T6

c6
δ6p

”
...

Z4M−1,p

Z4M,p


χ−p,nξ

+
p



“
Z1,p − T1

c1
δ1p

”“
Z2,p − T2

c2
δ2p

”
Z3,p

Z4,p“
Z5,p − T5

c5
δ5p

”“
Z6,p − T6

c6
δ6p

”
...

Z4M−1,p

Z4M,p




, (27)

and

Qq,n =


ξ+
q



Z1,q

Z2,q“
Z3,q − T3

c3
δ3q

”“
Z4,q − T4

c4
δ4q

”
Z5,q

Z6,q

...“
Z4M−1,q −

T4M−1
c4M−1

δ(4M−1)q

”“
Z4M,q − T4M

c4M
δ(4M)q

”


ξ−q



Z1,q

Z2,q“
Z3,q + T3

c3
δ3q

”“
Z4,q + T4

c4
δ4q

”
Z5,q

Z6,q

...“
Z4M−1,q +

T4M−1
c4M−1

δ(4M−1)q

”“
Z4M,q + T4M

c4M
δ(4M)q

”




.

(28)
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Matrix R is due to right hand homogeneous boundary conditions and again
is a complex matrix:

R =


χ+

1,n+1 χ
−
1,n+1 0 0 . . . 0 0 0 0

0 0 χ+
2,n+1 χ

−
2,n+1 . . . 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 . . . χ+
2M−1,n+1 χ

−
2M−1,n+1 0 0

0 0 0 0 . . . 0 0 χ+
2M,n+1 χ

−
2M,n+1

 . (29)

3 Solution of the eigenvalue problem

The matrix equation (23) constitutes an evp having infinitely many eigen-
values. Since the matrix J(s) contains system parameters it is referred to
as the system matrix. The elements of the system matrix are transcendental
functions of the parameter s, which is a complex number (s = −δ+iω) as the
system is damped. The imaginary part of s represents a circular frequency
and the real part represents a decay coefficient. From its constitution, the ele-
ments of the system matrix have a large variation in magnitude, which makes
it behave numerically poor. We faced difficulties in finding all of the system
eigenvalues, in the frequency range of consideration (that is, 3 to 50 Hz) by
conventional methods of solving transcendental evp’s [5, 6, 7, 8, 9, 10, 11, 12].
In what follows, different approaches are discussed for solving this numeri-
cally poor transcendental eigenvalue problem.

3.1 Determinant search method

One technique for solving the transcendental evp is by the determinant
search method [13, 3], in which one searches values of s for which

det [J(s)] = 0 . (30)
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Since the parameter s is a complex number, the search domain is two
dimensional. Finding all of the eigenvalues with this approach is only possi-
ble for relatively small systems. Due to the poor numerical behavior of the
system matrix J(s), it is easy to miss many values of s for which the deter-
minant of J(s) is zero. Although normalization of the basic variables leads to
a better conditioned system matrix, difficulties are faced when trying to find
the eigenvalues for big system matrices with the determinant search method.
The major difficulty one faces is that, for a big system matrix the optimizer
does not converge to zero, rather it sticks to a minimum. The prime reason
for this difficulty is the large variation in the order of numerical values of
the elements of the system matrix, which, together with the large number
of algebraic operations involved in calculating the determinant, lead to such
numerical problems. Moreover, additional checks are required to confirm
whether the obtained values are eigenvalues of the system or not.

3.2 Alternate approach

To overcome the difficulties faced in the determinant search method, we
used an alternate approach in which the homogeneous set of 4M(N + 1)
simultaneous equations, given by Equation (23), is first transformed into
a non-homogeneous system by using any {4M(N + 1)− 1} equations. A
simple and better conditioned optimization criterion is then defined for the
remaining equation. The steps are described in more details by the following.

1. Let A1,1 = 1 .

2. Substitute the value of A1,1 into any {4M(N + 1)− 1} homogeneous
equations of Equation (23), so as to transform them into a set of non-
homogeneous equations. Determine other system variables, that is,
B1,1, A2,1, B2,1, . . . , A2M,N+1, B2M,N+1 (refer Equation (24)), by solving
these {4M(N + 1)− 1} non-homogeneous equations with the help of
Gauss elimination.
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3. Substitute the values of B1,1, A2,1, B2,1, . . . , A2M,N+1, B2M,N+1 back into
remaining one [say lth] equation. Since the perviously assumed A1,1 was
not the correct one, these values will not satisfy the lth equation and
will result in an error ε:

Jl,1 +B1,1Jl,2 + A2,1Jl,3 +B2,2 Jl,4 + · · ·
+ A2M,N+1 Jl,{4M(N+1)−1} +B2M,N+1 Jl,4M(N+1) = ε . (31)

The optimization criterion, now, is to search such values of s, in the
complex domain, for which |ε| equals (or tends to) zero. This approach
leads to a numerically well behaving optimization criterion, which converges
faster than the determinant search method. It gives most, if not all, of the
eigenvalues provided we give a good initial guess. Moreover, one can always
be sure that the value of s found after minimizing ε, is an eigenvalue of
the system in Equation (23). However, this approach requires good initial
guesses, otherwise it fails to find very closely spaced eigenvalues because of
the two dimensional search domain.

3.3 Continuous spectrum approach

We observed that in the case of very big system matrices (for example, bun-
dled conductors attached with many spacer dampers), the aforementioned
approaches fail to find some of the eigenvalues, even if the given initial guesses
are good enough. A plausible reason for missing eigenvalues is the two di-
mensional search domain. Specially in the case of bundled conductors the
system frequencies are very closely spaced (at 0.001 Hz). If two parameters
(that is, δ and ω) are simultaneously searched, it is very likely that the opti-
mizer will stick to one combination of these parameters for many consecutive
guess values. It poses a major difficulty of missing the eigenvalues even with
good initial guesses.

In the continuous spectrum approach the dense frequency spectrum of the
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bundled conductors is utilized to reduce the search domain from two dimen-
sional to one dimensional. Since for a bundled conductor the spacing of the
eigenfrequencies is very small, it can be assumed to have a continuous fre-
quency spectrum [2]. Thus it is reasonable to assume that every frequency, in
the range of consideration, is a natural frequency of the system. This means
that we know the complex parts ω of eigenvalues s beforehand. Correspond-
ing to each ω value there exist one δ value which satisfies

J(δ)a = 0 . (32)

Therefore, the criterion now is to find the corresponding δ value for closely
spaced ω values, using any of the above two approaches. This simplification
converts our two dimensional optimization problem (in the complex domain)
to one dimensional (in the real domain). The results section shows the peaks
in the continuous plot represent the eigenvalues of the system. In the current
work the entire coding was done in Matlab 6.5, and for minimizing ε, among
others, the in-built function fsolve was used.

After finding the eigenvalues s of the system matrix, the corresponding
eigenvectors were found by solving an equivalent algebraic matrix evp of the
form

[J(s)− λI]a = 0 . (33)

The eigenvector corresponding to any eigenvalue s of the transcendental evp
of Equation (23) is obtained by finding the eigenvector associated to λ = 0
in the equivalent algebraic evp of Equation (33) [3].

4 Results

To compare the effectiveness of the described approaches, a representative
example problem of a bundled conductor was considered (refer Figure 2). A
quad bundled transmission line (that is, M = 4) of span length L = 140 m
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Figure 4: Obtained frequencies from different methods (24.5–26.5 Hz)

has been taken. It carries two quad spacer dampers, which are attached re-
spectively at l1 = 40 m and l2 = 90 m, from the left end. Both the spacer
dampers are taken of the same mass, geometric and damping characteris-
tics. The diameter of the conductor is 17.5 mm and its mass per unit length
is 0.981 kg/m. The tension in all four conductors is 50 kN.

The transcendental evp was solved with the above described approaches
and the eigenvalues were searched in the frequency range of 20 to 30 Hz.
Figure 4 compare the obtained eigenvalues from these three approaches. In
the figures, the eigenfrequencies in Hertz have been plotted with respect
to their corresponding damping ratios. Because of their small values, the
damping ratios have been plotted on the log-scale. Figure 4 shows that the
system eigenfrequencies are very closely spaced. For a better illustration,
eigenvalues in the frequency range of 24.5 to 26.5 Hz have only been plotted;
however the frequency range of interest lies between 3 to 50 Hz [1].



5 Conclusions C890

These figures show that there are many eigenvalues which were either
missed by the determinant search method or by the alternate approach. How-
ever, the continuous curve, which has been obtained by the continuous spec-
trum approach, passes through all the eigenvalues found from the other two
approaches. We observed that all the peaks in the continuous curve represent
the system eigenvalues, as seen in Figure 4. Thus one can easily identify that
the continuous spectrum approach is able to search many extra eigenvalues,
which were missed by the other two approaches (refer Figure 4).

The continuous spectrum approach provides us with a continuous curve of
damping ratios corresponding to all the frequencies in the range of interest.
For a transmission line engineer the major interest is in knowing the max-
imum strains levels in transmission line, corresponding to each eigenvalue.
Strains can now be computed after knowing the mode shapes and the actual
vibration amplitudes, which are obtained by the energy balance principle.

5 Conclusions

The problem of aeolian vibrations of bundled conductors attached with many
spacer dampers was formulated first. The formulation resulted in a numeri-
cally poor transcendental system matrix. Thus obtained system matrix posed
numerical problems in the solution of transcendental evp because of its big-
ger size and large differences in the order of numerical values of its elements.
The classical determinant search method and one alternate approach were
discussed for solving the transcendental evp, which Verma & Hagedorn [3]
also used for the solution of simpler problem of single conductor transmission
lines. A new approach, named as continuous spectrum approach, was pre-
sented for the solution of evp in the case of bundled conductors. The new
approach provides a good engineering solution for the transcendental evp.
One representative example problem was solved by all described approaches
and the results were compared.
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