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Application of the variational calculus to
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Abstract

The problem of determining the equilibrium shape of a wetting
meniscus is proposed as a rich example of application of the varia-
tional method. The problem describes a common-place phenomena
that is conceptually simple and physically tangible for undergraduate
students. The proposal has the further appeal in that it illustrates how
more abstract variational boundary equations can be implemented. It
also represents a system that gives rise to both stable (minimum) and
unstable (maximum) wetting profiles, and by utilizing these it leads
to a criterion earmarking eventual existence limits of solutions of the
variational equations.
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S-601 74, Norrköping, Sweden. mailto:freco@itn.liu.se

See http://anziamj.austms.org.au/V47EMAC2005/Cortat2 for this article, c© Aus-
tral. Mathematical Soc. 2007. Published July 20, 2007. ISSN 1446-8735

mailto:freco@itn.liu.se
http://anziamj.austms.org.au/V47EMAC2005/Cortat2


1 Introduction C895

1 Introduction

One of the most fundamental principles of physics requires that a system,
when faced with a choice between several possible states, select the energet-
ically most favorable option, the state with the lowest energy. An enormous
variety of phenomena are governed by this principle, and a range of math-
ematical methods have been developed to determine the minimal possible
energy values. Among these the variational minimization technique is one of
the most common.

Determining the minima of the energy surface as a function of scalar vari-
ables can be achieved by use of standard derivative methods. However, phys-
ical phenomena are often governed by energies that are functionals, in which
cases the minima are determined by a generalization of the scalar methods,
referred to as variational minimization of functionals. The procedure is based
on assuming the existence of a function or functions for which the functional
is an extremum and perturbing this function or functions requiring that terms
of first order in the perturbation vanish [1, 2]. This generally delivers a sys-
tem of differential equations, the Euler–Lagrange equations, whose solution
guarantees an extremum of the energy relative to all neighboring functions.
One slight drawback with this idea, both in the scalar and energy functional
cases, is that it results in equations leading to extrema of the quantity to be
minimized, but not directly to an energy minimum.

Nonetheless, in a standard physics or applied mathematics curriculum,
the subject of variational calculus is considered an essential tool in a physi-
cist’s or applied mathematician’s theoretical hardware. However, although
the common student course on the variational method, based on standard
texts in mechanics [3, 4] or mathematical methods of physics [1, 2, 5] or even
applied mathematics [6, 7], covers the theoretical basis of the variational
calculus, only elementary examples are taken up to illustrate the principles.
The classic example is a hanging cable with fixed endpoints. Other examples
often feature linear systems, again with simple boundary conditions, that
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generally lead to a single unique solution, automatically guaranteed to be a
minimum. With such examples the full scope of the method remains unex-
posed. Moreover, the more difficult aspect of nontrivial boundary conditions
is not always addressed, and certainly cannot be explored in detail with sim-
ple examples. Indeed, we argue that these nontrivial boundary conditions are
not often taken up because of the absence of a suitable illustrative example.

In this article we propose a more involved physics problem to illustrate the
variational calculus. This rich example we consider can add considerably to
student understanding and appreciation of the method. The problem, arising
in many areas of chemical engineering systems [8, 9], involves determining
the equilibrium shape of a wetting meniscus formed around an axisymmetric
solid object that is partially immersed in an infinite liquid bath. The appeal
of the present example problem is four-fold. Firstly, it addresses a concep-
tually simple, physically intuitive system that can be easily grasped by the
physics student, thus diminishing the educational burden. Secondly, the spe-
cial feature that the equilibrium fluid interface—wetting meniscus—must be
in contact with the solid leads naturally to use of the nontrivial, so-called nat-
ural boundary conditions [2], otherwise considered abstract generalizations
of the method. Thirdly, the system of differential equations resulting from a
functional variation can possess at least two plausible solutions, one stable
(minimum) and one unstable (saddle point or maximum). Thus, the educator
demonstrates one important practical aspect of the variational method: that
the Euler–Lagrange system is a necessary but not sufficient system leading
to the minimizing solution. Finally, the two solutions in combination lead to
a feature seldom addressed in teaching the method: the possibility that the
variational method fails altogether to give a minimizing solution. Inherent in
the wetting problem is an absolute stability or existence limit that is possible
to track numerically.
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2 The variational method

This section introduces the problem of determining the equilibrium shape
of a wetting meniscus via the variational method. Since the overall aim of
this article is to present a sufficiently simple problem to exemplify the more
intricate features of the variational method, we shall restrict the example to
its most basic form. More complicated models that deal with wetting and
attempt to incorporate molecular and other details exist [10], but these are
not discussed here.

Three surface areas are featured: a solid-gas contact area, a solid-liquid
contact area, AΞ, and a liquid-gas contact area, AΩ, each with an intrinsic
surface energy density denoted, respectively, by γSG, γSL and γ. These,
together with the densities of the liquid, ρL, and gas, ρG, are the only material
parameters determining the physical shape of the meniscus profile. In terms
of geometry, we assume that the wetted solid is cylindrically symmetric, and
that the fluids extend infinitely away from the vicinity of the solid. Thus, we
do not address the issue of volume constraints.

The remainder of this section is divided into three subsections. The first
deals with an alternate derivation of the shape equation, not uncommon in
chemical engineering texts. The second subsection introduces the variational
method for the relatively simple problem of wetting of an infinite cylinder,
typically addressed in chemical engineering texts, and reproduces the equa-
tion derived in the first subsection. On the other hand, the third subsection
deals with wetting of the paraboloid cylinder and represents a less trivial
application of the variational theory.

2.1 Laplace and Young–Dupre equations of capillarity

One recognized way of determining the equilibrium shape of the interface
between two stationary fluids involved in the wetting of a solid surface is



2 The variational method C898

by using a force balance argument [11]. A curved interface in equilibrium
requires that the forces acting on a surface element be in balance. In the case
in point this force balance is expressed in terms of the local mean (Gaussian)
curvature and the pressure difference across the ideal surface:

γ

(
1

R1

+
1

R2

)
= ∆p .

Here, the pressure difference comes from buoyancy effects, g∆ρ = g (ρL − ρG) .
The two principal radii of curvature, R1 and R2, are expressed differentially
in terms of the local shape function, z = z(r) . By doing so the usual Laplace
differential equation governing the shape of the profile [11] is obtained,

γ

[
zrr

(1 + z2
r )

3/2
+

zr

r
√

1 + z2
r

]
= g∆ρz . (1)

A force balance argument, applied to the line of three phase contact on the
solid surface, is traditionally used to deduce a boundary condition to invoke
when (1) is integrated: the vector sum of the three surface tensions acting on
the contact line is zero. Applying the reasoning to the component of the net
force in the direction parallel to the solid (Figure 1b), leads to the well-known
force balance

γ cos θ0 = γSG − γSL =: ∆γ . (2)

This relation is known as the Young–Dupre equation for the contact angle
θ0 = φ0 + π/2 , defined as the angle between the fluid interface and the solid
surface, measured through the liquid region. φ0 denotes the angle the fluid
interface makes with the horizontal (see Figure 1). Relation (2) depends only
on the different surface tension coefficients and is independent of either the
curvature of the solid, the curvature of the contact line or the gravitational
properties of the system. In the force-balance derivation of (2), one implicitly
assumes the contact line has zero curvature.

Equation (2) can be rewritten in terms of the slope of the profile at the
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Figure 1: (a) A schematic demonstrating the wetting of a hydrophilic cylin-
der of constant circular cross-section. The solid is shown in dark grey, while
the liquid phase is shown in light grey. The point (r0, z0) indicates the three-
phase contact point(line). (b) Close-up view of the contact region. Arrows
indicate the direction of surface tensions considered as directed forces per
unit length.
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line of contact with the solid to give the boundary condition,

zr|r=r0√
1 + z2

r |r=r0
= −∆γ

γ
, (3)

that the profile has to satisfy on the surface. Note that the slope at the
cylinder is opposite in sign to ∆γ, and since the profile is monotonic, the
height of the contact line, z0, will have the same sign as ∆γ. Consequently,
a hydrophilic cylinder ∆γ > 0 will see a meniscus rise, while a hydrophobic
cylinder ∆γ < 0 will see a meniscus fall.

2.2 Energy functional for ideal capillarity: infinite
cylinder

An application of the variational method begins with a definition of a func-
tional, normally an energy functional that is to be minimized. In our case
the functional is the energy change,

∆F = (γSL − γSG) ∆AΩ + γ ∆AΞ + g (ρL − ρG)

∫
VΞ

z dV , (4)

associated with the deformation of the fluid interface Ξ and preferential wet-
ting of the immersed solid. The first term represents the favorable increase
in contact energy resulting in a change in contact area with the solid, ∆AΩ.
The second term represents the unfavorable increase in surface energy pro-
portional to the increase in fluid interfacial area ∆AΞ, resulting from the
induced deformation of Ξ, propagating away from the solid. The last term is
also an unfavorable contribution whose origin is the gravitational potential
proportional to the mass of liquid displaced due to deformation. At equilib-
rium these combine in such a way that the total energy change is minimal.
Although Equation (4) applies generally to the wetting problem, we con-
fine attention here to a cylinder of infinite length and radius r0, vertically
immersed in a semi-infinite bath of liquid, with a gaseous phase filling the
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upper half-space. An axisymmetric meniscus is created with a three-phase
circular contact line at height, z0.

Suppose an arbitrary, axisymmetric wetting profile denoted by z̃(r) with
meniscus height z0 is created. The change in the energy of the system mea-
sured with respect to the undeformed interface (as reference state) can then
be expressed as

∆F = 2π

∫ ∞
r0

f(r, z̃, z̃r) dr −Ψ(z0) ,

where f := γ
(
r
√

1 + z̃2
r−r

)
+g∆ρrz̃2/2 is a sum of surface and gravitational

contributions, associated with the second and third terms of (4). The first
term of (4), the change in contact energy at the boundary, is here represented
by Ψ(z0) := 2π∆γr0z0 .

In the simplest variational approach one considers the set of possible pro-
files (r, z̃(r)) that satisfy the end constraints of an asymptotic return to the
undeformed state, z̃ → 0 as r → ∞ , and a constant meniscus height at
contact with the cylinder, z̃ (r0) = z0 . From this set one extracts the min-
imizing profile, denoted z(r), by considering an arbitrary perturbed profile
of the form z̃(r) = z(r) + δz(r) . δz(r) is a suitably differentiable func-
tion that satisfies the same asymptotic constraint as z, but vanishes at
r = r0 , δz (r0) = 0 . These conditions ensure that the perturbed profiles
have the correct height, z0. A first-order approximation to the functional
change, δF [δz; z] = ∆F [z + δz] −∆F [z] , is readily found following a sub-
stitution and expansion to first order in the perturbation, δz. By setting
this first-order functional change to zero, δF = 0 , and invoking the Dubois–
Reymond lemma [2, 6, 7] one is lead to the usual Euler–Lagrange equation

d

dr

∂f

∂zr
− ∂f

∂z
= 0 .

Invoking the above expression for f one regains Equation (1) to be satisfied
by the minimizing profile, z.
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Figure 2: Cross-sectional schematics demonstrating the wetting of a semi-
infinite paraboloid cylinder of shape, zs (rs) = zp0 +λr2

s , being a special case
of an axisymmetric solid of shape, zs (rs) = h (rs) . Upper figure (a) shows
a hydrophilic solid for which zs > 0 . Lower figure (b) shows a hydrophobic
solid that is partially immersed.
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To reproduce the boundary condition Equation (2) or equivalently (3),
via the variational treatment is not typically demonstrated in undergraduate
courses and requires somewhat more machinery. To avoid repetition and to
save space, we take up this discussion in a more general context in the next
section. The reader can then easily make the necessary association with the
present special case.

In light of later discussions, we point out that what is often neglected or
under emphasized in the teaching of the variational method: solving Equa-
tion (1) is a necessary but not sufficient condition of the minimizing profile.
Solutions to (1) satisfying the boundary condition (2), may represent other
forms of local extrema of the functional ∆F . Moreover, without considering
the second variation of ∆F , one cannot generally distinguish between solu-
tions that are local minima, maxima or saddle points, although an evaluation
of the functional itself can give some insight.

2.3 Energy functional for ideal capillarity:
semi-infinite parabolic cylinder

Consider now a similar system wherein the infinite cylinder is replaced by
a semi-infinite, rotationally symmetric solid whose vertical cross-section is
given by an injective, monotonic increasing function of the form zs = h(rs) ;
dh/drs =: hrs ≥ 0 . As in the previous section, a wetting meniscus is created
when the solid is partially immersed in the liquid bath. The circular, three-
phase contact line again takes on a height, z0. Note, that the finite slope
of the solid at the contact line, hrs|r0 , opens up the possibility that the de-
formed gas-liquid interface, Ξ, is a non-injective function of r. Consequently,
a parametric representation of the profile, (r(τ), z(τ)), is better suited. Here,
we choose to use as parameter the arclength variable, τ , measured along the
vertical cross-sectional profile (see Figure 2). The energy functional of the
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system is then

∆F =

∫ ∞
0

f (r̃, z̃, r̃τ , z̃τ ) dτ − 2πγ

∫ ∞
0

r dr −Ψ(r0, z0) , (5)

where
f := 2πγr̃

√
r̃2
τ + z̃2

τ − πg∆ρr̃2z̃z̃τ (6)

and

Ψ(r, z) :=
π

2
g∆ρr̃2z̃2 + 2π

∫ r

0

(
∆γrs

√
1 + h2

rs − g∆ρrs
h(rs)

2

2

)
drs . (7)

As in Section 2.2, implementing the variational method involves adopting
optimal profile functions, r(τ) and z(τ), and expressing an arbitrary profile
by the pair (r̃, z̃) where r̃(τ) = r(τ) + δr(τ) and z̃(τ) = z(τ) + δz(τ) . As
before, the perturbations δr and δz will satisfy the asymptotic conditions
δr, δz → 0 as τ →∞ . On the other hand, at the object-end of the profile we
set no requirements on the perturbation values, bar one. A natural inherent
constraint is that whatever form the surface profile eventually takes, it must
reside on or be connected to the solid surface, S(rs, zs) = h(rs) − zs = 0 .
Consequently, both pairs (r̃, z̃) and (r, z) must adhere to this constraint,
which then prevents the perturbations (δr, δz) from varying completely in-
dependently. This additional consideration can be included in a number of
ways [2], most simply by creating a modified functional

F = ∆F + µS ,

where µ is a Lagrange multiplier. Variation of F can now be effected with-
out consideration of the constraint. The first-order approximation to the
functional change, δF [δr, δz; r, z] = F [r + δr, z + δz]− F [r, z] , found by ex-
panding to first order in the perturbations, δr and δz, which are now com-
pletely independent, possesses several contributions. First there is the pair
of Euler–Lagrange differential equations

d

dτ

∂f

∂rτ
− ∂f

∂r
= 0 ,

d

dτ

∂f

∂zτ
− ∂f

∂z
= 0 ,
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arising from terms in the integral, ∆F , that are proportional to δr and δz,
respectively. Then there arise expressions proportional to the perturbations
evaluated at the boundary, δr(τ = 0) and δz(τ = 0), respectively,

µ
∂S

∂r

∣∣∣∣
0

−
(
∂f

∂rτ
+
∂Ψ

∂r

)∣∣∣∣
0

= 0 , µ
∂S

∂z

∣∣∣∣
0

−
(
∂f

∂zτ
+
∂Ψ

∂z

)∣∣∣∣
0

= 0 .

Eliminating the Lagrange multiplier from between these two equations gives
what Courant and Hilbert [2] refer to as a natural boundary condition[(

∂f

∂rτ
+
∂Ψ

∂r

)
∂S

∂z

]∣∣∣∣
0

=

[(
∂f

∂zτ
+
∂Ψ

∂z

)
∂S

∂r

]∣∣∣∣
0

(8)

corresponding to the requirement that the solution be connected to the solid
surface.

Introducing the signed angle φ(τ) between the horizontal and the tangent
to the profile at the point (r(τ), z(τ)) (see Figure 2a), and inserting the func-
tion f from (6), the two second-order Euler–Lagrange differential equations
can be rewritten more conveniently as a set of three first-order differential
equations

rτ = cosφ(τ) , zτ = sinφ(τ) , φτ =
g∆ρ

γ
z(τ)− sinφ(τ)

r(τ)
. (9)

This system is the parametric analogue of the Young–Laplace equation (1).

With f , Ψ and S explicitly implemented in (8), the boundary equation
becomes

(zτ |0)(hr|r0) + rτ |0√
(rτ |0)2 + (zτ |0)2

√
1 + (hr|r0)2

= −∆γ

γ
, (10)

which is independent of gravitational properties. This general boundary
condition must be satisfied by solutions to (9), and it follows from a direct
application of the natural boundary conditions of variational calculus. Con-
trast (10) with its counterpart in the right circular cylinder case, (3). Extract-
ing the factor |rτ |0| and taking the limit |dh/dr| → ∞ at r = r(τ = 0) = r0
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Figure 3: The change in free energy, ∆F , due to deformation as a function
of solid height, zp0, for the stable (solid lines) and unstable (dashed lines)
solutions, for three values of the contact angle, θ0. The respective existence
limits, zp0,max, indicated in the figure are given in mm. Physical parame-
ters are: ∆ρ = 996.91 kg/m3, γ = 0.0728 N/m, λ = 50 m−1, θ0 = 35◦, 90◦

and 135◦.
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reduces (10) to (3). Upon substituting cosφ0 and sinφ0 for the profile deriva-
tives, rτ and zτ , and tan θP for hr|r0 in (10), we obtain

sin θP sinφ0 + cos θP cosφ0 ≡ cos(θP − φ0) = −∆γ

γ
,

which one easily recognizes as the Young–Dupre relation (2) for the contact
angle θ0 = φ0 − θP + π . Despite the fundamental geometrical difference to
the cylinder system, we have retrieved the same physical boundary condition,
independent of both gravitational and geometric properties. Yet, the shape of
the solid still matters for determining the initial angle, φ0, via the factor hr|r0
in (10).

3 Numerical results for a semi-infinite

paraboloid

For a numerical study of the wetting problem we chose the specific case
of a semi-infinite paraboloid of vertical cross-section, z(rp) = zp0 + λ r2

p .
Prosaically, this is a solid in the shape of a pin, with apex at height zp0, and
splay measured by the parameter λ. The numerical task involves solving the
system of differential equations (9) with boundary condition (10). The three
a priori unknown boundary values, r0, z0 and φ0, needed to specify a profile,
are interrelated: r0 and z0 via the solid geometry; φ0 = θ0 + θP − π with
θ0 given by the Young–Dupre relation (2); and θP by the slope of the solid:

φ0 = θP + θ0 − π = tan−1 (hr|r0) + cos−1

(
∆γ

γ

)
− π . (11)

The remaining unknown is determined iteratively by matching an asymptotic
approximation at a finite radius r∞ = r(τ∞)

z(r) = CK0(ηr),

where η = (g∆ρ/γ)1/2 . A combined Newton–Raphson and Runge–Kutta
iteration method is used; details are sketched out in the algorithm below.
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Figure 4: Stable (a) and unstable (b) solutions of (9) (thick lines) and
their behavior as a function of height of paraboloid (thin lines). The wetting
profile common to both figures corresponds to the critical solution, at the
maximum paraboloid height, zp0,max = 2229.994µm. The insets represent
the contact line height (solid lines) as a function of paraboloid height (dotted
lines). Physical parameters are: ∆ρ = 996.91 kg/m3, γ = 0.0728 N/m, θ0 =
60◦, λ = 100 m−1.
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Algorithm

• fix r∞ (along with all other physical parameters); guess z∞; then deduce
the following

C =
z∞

K0(η · r∞)
, zr(r∞) = −C ·η ·K1(η ·r∞) , φ∞ = tan−1(zr(r∞)) .

• solve the differential equations (9) backwards (to maintain numerical
stability, τ goes from τ∞ to 0) until the profile crosses or misses the
paraboloid. This gives {r0, z0, φ0}.

• using {r0, z0}, obtain the corresponding theoretical angle φ0,theo via (10).

• compare the numerically obtained φ0 with the theoretical angle φ0,theo

and correct the guess z∞ accordingly.

3.1 Stable and unstable profiles

For a given set of physical parameters, the above simple numerical method
gives, in general, a pair of solutions, both reasonable looking gas-liquid inter-
faces. However, physics dictates that they cannot both be local minima of the
energy functional. The possibility and significance of finding more than one
solution to the governing equations should be kept in mind. This possibility
is inherent in this system of nonlinear equations, and is the second appealing
feature of this example. Solutions of system (9) satisfying boundary condi-
tion (10), are stationary points of the energy ∆F , and are thus either local
minima, maxima or saddle points of the energy surface. Although the second
variation of (5) should ultimately be considered to distinguish between the
types of extrema, distinction can be achieved by means of simple physical
arguments when the number of solutions is small.

Since the two solutions are successive local extrema, one must be a local
maximum (or a saddle point) of ∆F , and hence an unstable solution. This
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is supported by the fact that the energy change (5) for one of the solutions is
systematically larger than for the other. Figure 3 shows the two branch lines
representing the stable and unstable energies. If plotted in 3D the stable
branch would trace out an energy valley, while the unstable branch would be
trace out a ridge on the energy surface.

The behavior of the two solutions as a function of the paraboloid height
parameter, zp0, is illustrated in Figure 4. The profile corresponding to the
lowest energy, nominally the stable solution, exhibits physically expected
behavior. As the solid is immersed in the liquid, the air-water interface is
shifted aside and the radius of the contact line, r0, increases steadily (Fig-
ure 4a). The second solution exhibits very different and very unphysical
behavior (Figure 4b). As the solid is lowered, the unstable profile slides in
under it, reducing both the gravitational and surface contributions to the
energy. However, the contact area with the solid, ∆AΩ, is also reduced as is
then the favorable contact energy. The end result is a higher energy than is
attributed to the stable profile; hence the reference to an unstable solution.
Note that since the unstable profile squeezes itself in between the solid and
the reference level, z = 0 , it exists only for positive paraboloid heights zp0.
The stable solution, on the other hand exists for any, zp0, negative or positive
(the latter up to a point).

Naturally, the stable solution is the only one selected by nature and as
such is the only reproducible profile, and the only one of physical interest.

3.2 Stability limit

An understanding of both the physical system and the variational method,
we have found, can be enhanced by the existence of more than one solution.
Tracking both stable and unstable solutions as a function of increasing zp0,
shows that both stable and unstable profiles tend to converge, eventually
merging at a certain value, zp0,max, of the solid height. From Figure 4, as zp0
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increases the stable profiles approach the coincident profile from the right,
with contact radius, r0, decreasing, while the unstable profiles approach from
the left, with both r0 and z0 steadily increasing. The key feature of this
convergence is that for solid heights above zp0,max there are no solutions
to (9) satisfying (10), stable or unstable. zp0,max therefore characterizes the
absolute stability limit of the system. Moreover, the convergence of the two
solutions to a unique critical profile provides an effective numerical method to
determine the well-defined existence limit of physical solutions. The physical
significance of this is that there is a practical limit to which an object can
be raised while still maintaining contact with a wetting meniscus.

Figure 5a shows the contact line radius r0 as a function of zp0, for solids
having four different values of contact angle θ0. The contact radii of the sta-
ble and unstable profiles monotonically decrease and increase, respectively,
as zp0 increases, to merge at the limiting height zp0,max. As the paraboloid
is immersed (that is, zp0 decreases) the three-phase contact region becomes
increasingly broad and the contact radii for the stable profiles diverge (solid
lines, left side of the figure). In contrast, the unstable contact radii ap-
proach 0 as zp0 decreases arriving at this limit when zp0 = 0 ; the profiles
cease to exist for negative zp0. Figure 5b and the insets in Figure 4, show
the dependence of the meniscus height z0 on zp0, for the same four values
of θ0. While the unstable meniscus height grows monotonically with zp0, the
stable meniscus height z0 reaches a maximum (indicated by a square sym-
bol on the solid curves in Figure 5b) before decreasing until it meets with
its unstable counterpart at the limit zp0,max. Finally, Figure 5c shows the
zp0−dependence of the angle that the meniscus at contact makes with the
horizontal, φ0, for the same four values of θ0. As with the other properties,
both the stable and unstable meniscus angles converge at a stability limit as
the solid is raised. At the other extreme, zp0 → −∞ , the inner angle the
solid makes with the horizontal approaches π/2 and the stable values of φ0

then converge to θ0 − π/2 , as in the case of the cylinder.
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Figure 5: The meniscus coordinates. (a) r0, (b) z0, and (c) φ0 as functions
of paraboloid height, zp0, for the stable (solid lines) and unstable (dashed
lines) solutions, for four values of contact angle, θ0. The vertical dotted
lines indicate the different existence limits, zp0,max, with the numerical values
given in (c) in mm. The diagonal dotted line in (b) represents the paraboloid
height. Physical parameters are: ∆ρ = 996.91 kg/m3, γ = 0.0728 N/m, λ =
200 m−1, θ0 = 60◦, 90◦, 120◦ and 160◦. The individual contact angle values
are indicated in (a).
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4 Summary remarks

The pedagogic benefit of a good physical example to illustrate abstract math-
ematical notions should not be underestimated. Particularly worthwhile is
an example that addresses several different aspects. The problem we have
described of determining the equilibrium shape of a wetting meniscus adja-
cent to a solid of simple geometry is rich in features that help clarify the
variational method. It illustrates how the more abstract variational bound-
ary equations can be implemented. It also represents a system that gives rise
to both minimum and maximum of the energy, an occurrence not normally
taken up in standard texts. Furthermore, by utilizing these two solutions
it is possible to establish a criteria that earmarks eventual existence limits
of solutions of the variational equations. The proposal has the further ap-
peal that it is conceptually simple in terms of addressing a common-place
phenomena whose behavior is physically tangible to undergraduate students.

The only negative aspect of this proposal is that solutions to the vari-
ational equations must be obtained numerically. This might restrict the
teacher to raise this example in ready made form as part of lecture mate-
rial, or to use it in a problem based learning context. However, solutions to
the governing equations can be obtained readily using standard differential
equation solvers in commercial software packages such as Matlab.
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