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The isolated scattering number can be
computed in polynomial time for interval
oraphs
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Abstract

The isolated scattering number of an incomplete connected graph G
is defined as isc(G) = max{i(G — X) — [X| : X € C(G)}, where (G — X)
and C(G), respectively, denote the number of components which are
isolated vertices and the set of all separators of G. The isolated
scattering number is a comparatively better parameter to measure the
vulnerability of networks. We give a polynomial time algorithm to
compute the isolated scattering number of interval graphs, a subclass
of co-comparability graphs. Our result can also be used to compute
isolated scattering number of proper interval graph.
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1 Introduction

A communication network is composed of processors and communication
links. If the network begins losing communication links or processors, then
there is a loss in its effectiveness. This event is called the vulnerability of
communication networks.

The vulnerability of communication networks measures the resistance of a
network to a disruption in operation after the failure of certain processors
and communication links. Cable cuts, processor interruptions, software errors,
hardware failures, or transmission failure at various points can interrupt
service for a long period of time. But network designs require greater degrees
of stability and reliability or less vulnerability in communication networks.
Thus, communication networks must be constructed to be as stable as possible,
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not only with respect to the initial disruption, but also with respect to the
possible reconfiguration of the network.

In an analysis of the vulnerability of networks to disruption, three important
quantities (there may be others) are

1. the number of elements that are not functioning;
2. the number of remaining connected sub-networks; and

3. the size of a largest remaining group within which mutual communication
can still occur.

A communication network is modelled as an undirected and unweighted graph,
where a processor (station) is represented as a vertex and a communication
link between processors (stations) as an edge between corresponding vertices.
When we use a graph to model a network, based on the above three quantities,
a number of graph parameters have been proposed for measuring the vulnera-
bility of networks, such as connectivity, toughness [6], scattering number [11],
integrity [1], tenacity |7], rupture degree [19], isolated rupture degree [16, 17|
and their edge-analogues.

We only consider finite simple undirected graphs, and we refer to the textbook
of Bondy and Murty [2| for any undefined graph terminology and notations.
The vertex set of a graph G is denoted by V and the edge set of G is denoted
by E. For X C V(G), let w(G — X) and i(G — X), respectively, denote the
number of components, the number of components which are isolated vertices
in G — X. If X is a vertex subset of V, then we use G[X] to denote the
subgraph of G induced by X. A subset X C V is a separator (or cut-set) of a
graph G = (V,E) if G — X has more than one component. The empty set ()
is a separator of G if and only if G is disconnected. We let C(G) denote the
set of all separators of G.

One of the vulnerability parameters is the scattering number which take into
account the quantities 1 and 2. The scattering number was introduced by
Jung [11] in 1978, and the scattering number of an incomplete connected
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graph G is defined as
s(G) =max{w(G—S)—1S|:S € C(G), w(G—-S) > 1}.

Motivated from Jung’s scattering number by replacing w(G—X) with i({G—X)
in the above definition, Wang et al. [21] introduced the isolated scattering
number, isc(G), as a new parameter to measure the vulnerability of networks.

Definition 1 (|21]|). The isolated scattering number of an incomplete con-
nected graph G is defined as

isc(G) = max{i(G — X) — |X] : X € C(G)},
where the mazimum is taken over all the separators of G.

Since a complete graph K,, has no separators, we define isc(K,) =2 —n.

Definition 2. A separator X of an incomplete connected graph G is called
an isc-set of G if isc(G) =1(G — X) — [X].

The isolated scattering number is of particular interest because it is considered
to be a reasonable measure for the vulnerability of graphs. As a new graph
parameter to measure the vulnerability of networks, scattering number and
isolated scattering number, differ in showing the vulnerability of networks.
This can be shown as follows. Consider the graphs G; and G, in Figure 1: it is
not difficult to check that s(Gy) = s(Gs) =5, but isc(G1) = 1 # 5 = isc(Ga).

Hence, the isolated scattering number is a reasonable parameter for distin-
guishing the vulnerability of these graphs. The less the isolated scattering
number of a network the more stable it is considered to be [16]. Wang et
al. |21] gave formulas for the isolated scattering number of join graphs and
some bounds of the isolated scattering number, and they also give a recursive
algorithm for computing the isolated rupture degree of trees. We prove that
for interval graphs this number can be computed in polynomial times.
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Figure 1: Two graphs with the same scattering number but the different
isolated scattering number

2 Preliminaries

This section characterises the property of minimal separator X of a graph G,
and gives a formula to calculate isolated scattering number via minimal
separator X of a graph G. First, we define the minimal separator.

Definition 3 ([13]). A subset X C V of G is called an a,b-separator for
nonadjacent vertices a and b of graph G if the remowval of X separates a
and b in distinct connected components. If no proper subset of X is an
a, b-separator of graph G, then X is called a minimal a,b-separator of G.
A minimal separator X of G is a set of vertices such that X is a minimal
a, b-separator for some nonadjacent vertices a and b.

The following lemma provides an easy test of whether or not a given vertex
set X is a minimal separator |14].

Lemma 4 (|14]). Let X be a separator of the graph G = (V,E). Then X is
a minimal separator if and only if there are at least two different connected
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components of G — X such that every vertex of X has a neighbour in both of
these components.

Theorem 5. Let G be an incomplete graph. Then

isc(G) = rrigx{ Z max[isc(G[Ci]), 0] — |X*| + k} ,

i=k+1

where the maximum s taken over all minimal separators X* of the graph G,
Cq, Co, ..., Cyx are the components of G — X* which are isolated vertices, and
Cxi1, Crio, ..., Cy are the connected components of G — X* which are not
1solated vertices.

Proof: First let X be an isc-set with the minimum number of vertices among
all isc-sets of G. Let X* be a minimal separator of G that is a subset of X,
we suppose Cy, Cs, ..., Cy be the components of G — X* which are isolated
vertices, and let Cy 1, Cxyo,...,Cy¢ be the connected components of G — X*
which are not isolated vertices. Then Cq, Cy, ..., Cy are also the components
of G — X, so, we consider the sets X; = XNCy,ie{k+1,k+2,...,t}. The
proof proceeds in the following two cases.

1. X; = 0. Then, C; is also a component of G—X, and so 1(C;—X;)—|Xi| =
0.

2. X; # 0, that is, [X{| > 1. Suppose that X; is not a separator of G[Cy].
Then i(G — (X —X;)) > (G —X) —1.

(a) If [Xi| =1, then
Y6 — (X=Xi)) = IX=Xi| 2 (G —=X) =1 =X+ [X{]
2 (G —X) — [X] = isc(G),

that is, X — X; is also an isc-set of G, a contradiction to the
minimality of X.
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(b) If [X;| > 1, then

G — (X =Xi)) = IX=Xi| =2 (G —=X) —=1—[X]+ [X;]
> i(G — X) — [X| = isc(G),

a contradiction to the definition of isolated scattering number of
graphs. Hence X; # () implies that X; is a separator of G[Cj].
Thus, isc(G[C4]) = i(G[Ci] — X;) — [Xil.

Summing up the values of i(G[Ci] — X;) — |X;i| over all components C; of
G — X* will achieve the value of 1(G — X) — |X| = isc(G). Thus

isc(G) = i1(G —X) — [X]

= Y {GICT —X) — Xk = IX* |+ k
< ) maxlisc(GICi]), 0] — X[ + k.

On the other hand, let X* be a minimal separator of G with w(G — X*) > 2.
Furthermore let C1, C,, ..., Cy be the components of G—X* which are isolated
vertices, and let Cy 1, Cxyo,...,C¢ be the connected components of G — X*
which are not isolated vertices. Then we construct a separator of G such
that X = X* U (Uf_,X;i) with X; C C; for every i € {k+ 1,k +2,...,t}.
Forie{k+1,k+2,...,t} we set X; = () if isc(G[Ci]) < 0. Otherwise, if
isc(G[Ci]) > 0, we choose a separator X; of G[C;i] such that isc(G[C;]) =
1(G[C;] — X;) — IXi]. Then X D X* is a separator of G and so

isc(G) > (G —X) —IX| = Z{x = Xi) = il = X+ K.

i=k+1
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Without loss of generality, let Cxy1,Cxia,...,Cxir, 0 <17 <t —Kk, be the
connected components of G with isc(G[C;]) < 0. Consequently,

isc(G) > ) {i(GIC:] — Xi) — Xu} — [X*| + k

i=k+1
k+r t

= Y 0+ Y (isc(GICH) — X) + K
i=k4+1 i=k+r+1

t
> Z maxl[isc(G[Ci]),0] — [X*| + k.

i=k+1

This completes the proof. [ Y

3 Isolated scattering number for interval
graphs

Interval graphs are a large class of graphs and important in modelling useful
networks [10]. This section tries to compute the isolated scattering number for
interval graphs, and proves that isolated scattering number can be computed
in polynomial time for interval graphs. First, we give the definition of an
interval graph.

Definition 6 ([10]). An undirected graph G is called an interval graph if its
vertices can be put into one to one correspondence with a set of intervals £ of a
linearly ordered set (like the real line) such that two vertices are connected by
an edge if and only if their corresponding intervals have nonempty intersection.
We call £ an interval representation for G.

Example 7. Figure 2 shows the interval representation of an interval graph G.
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Figure 2: An interval graph G and an interval representation for it

Interval graphs are a well-known family of perfect graphs with plenty of nice
structural properties [10].

Interval graphs arise in the process of modelling many real life situations, es-
pecially those involving time dependencies or other restrictions that are linear
in nature. This graph and various subclasses thereof arise in diverse areas
such as archeology, molecular biology, sociology, genetics, traffic planning,
very large-scale integration design, circuit routing, psychology, scheduling,
transportation. Recently, interval graphs have found applications in protein se-
quencing [12], macro substitution [8], circuit routine [20], file organization [5],
job scheduling [5], routing of two points nets [12], and so on. In addition to
these, interval graphs have been studied intensely from both the theoretical
and algorithmic point of view. Kratsch et al. [15] computed the toughness
and the scattering number for interval and other graphs. Li and Li [18] proved
the problem of computing the neighbour scattering number of an interval
graph can be solved in polynomial time. Broersma et al. [4] gave linear-time
algorithms for computing the scattering number and Hamilton-connectivity
of interval graphs. In this section, we prove that there exists polynomial time
algorithm for computing isolated scattering number of an interval graph.

The following characterisation was given by Gilmore and Hoffman [9].

Lemma 8 ([10]). Any induced subgraph of an interval graph is an interval
graph.
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Lemma 9 ([3]). An interval graph with order n and size m can be recognised
in O(m-+n) time.

Lemma 10 ([10]). A triangulated graph on n vertices has at most . mazximal
cliques, with equality if and only if the graph has no edges.

Lemma 11 (|9]). A graph G is an interval graph if and only if the maximal
cliques of G can be linearly ordered, such that, for every vertex v of G, the
maximal cliques containing v occur consecutively.

Such a linear ordering of the maximal cliques of an interval graph is said to be
a consecutive clique arrangement. Notice that interval graphs are triangulated
graphs, and by Lemma 10 we know that an interval graph with n vertices
has at most n maximal cliques. Booth and Lueker [3] give a linear time
recognition algorithm for interval graphs and the algorithm also computes a
consecutive clique arrangement of the input graph if it is an interval graph.

Using Lemma 4, we identify the minimal separators of an interval graph G.

Lemma 12 ([15]). Let G be an interval graph and let Ay, Ag, ..., A, t <M,
be a consecutive clique arrangement of G. Then the set of all minimal
separators of G consists of vertex set S, = A, N A1, pef{l,2,...,t—1}

Hence an interval graph G = (V,E) on n vertices has at most n minimal
separators.

Definition 13 ([15]). Let G be an interval graph with consecutive clique
arrangement A1, Aq, ..., Ar. We define Ag = Agypqr = 0. For all 1,7 with
1 <1< r < twedefine P(Lr) = (U Al —(Aim1UA). Aset P(Lr), 1<
L <r < t, is said to be a piece of G if P(1,7) # O and G[P(1,1)] is connected.
Furthermore, V.= P(1,1) is a piece of G (even if G is disconnected).

Cliques in P(1,7) are listed in the same order as that they are listed in
graph G.
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Lemma 14 ([15]). Let X be a minimal separator of a connected subgraph
G[P(L,7r)], 1 <1< r < t. Then there exists a minimal separator S, of G,
1 <p<r,suchthat X=S,NP(L,r) =S, — (A1 UA.1). Moreover, every
connected component of G[P(1,v) — X] is a piece of G.

From the definition of piece of G, there are essentially two different types of
pieces in an interval graph. A piece is called complete if it induces a complete
graph and it is called incomplete otherwise. Pieces P(1,1) are complete.
Furthermore, a piece P(1,7), 1 < r, may also be complete. And for every
complete piece G[P(L,7r)], 1< r,

isc(G[P(L,1)]) =2 — [V(GIP(L, v)]I. (1)

The incomplete piece G[P(1,1)], 1 <1< r < t, has minimal separators and
SO

t
isc(G[P(1,1)]) = max{ Z max[isc(G[Pi]), 0] — S, N P(L, )| + k} , (2)

i=k+1

where the maximum is taken over all S, N P(L,r), p € {1,2,...,r — 1},
that are minimal separators of G[P(1,1)], Py, Py, ..., Py are the components
of G[P(l,7) — S;,] which are isolated vertices, and Py, Pxo,. .., Py are the
connected components of G[P(l,r) — S;,] which are not isolated vertices

Let G be an interval graph. If G is complete, then isc(G) = 2 — |[V(G)].
Otherwise the ‘dynamic programming on pieces’ works with the following
steps.

1. Compute a consecutive clique arrangement Aq, Ao, ..., A of G, then
compute L(v) = min{k : v € Ay} and r(v) = max{k : v € A} for every
v € V, and then compute all minimal separators S, = A, N A,_1,
pefl,2,... t—1}

2. For all Lr with 1 < 1 < r < t compute the vertex set P(l,1),
mark (1,7) ‘empty’ if P(1,7) = 0 and mark (1, 1) ‘complete’ if P(1,1) # )
and G[P(1,7)] is a complete induced graph.
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3. For all non-marked tuples (1, 7) check whether G[P(1,1)] is connected.
If so, mark (1, 7) ‘incomplete’. Else, mark (1, 1) ‘disconnected’, and then
compute the components P; = P(1;,15), 1 <j < k, of G[P(1,7)] and
store (1y,71), (L3, 72), ..., (g, 1) in a linked list with a pointer from (L, 1)
to the head of this list.

4. For all marked ‘incomplete’ tuples (1,7), 1 <1< r < t, compute the
components P; = P(1;,15), 1 < j < k, of G[P(l,r) — S;], and then
check whether S, NP(1,r), is a minimal separator of G[P(1,r)], and if

so, mark (p, 1, ) ‘minimal’, store (1y,11), (12, 72), ..., (lk, k) in a linked
list with a pointer from (p,1,7) to the head of this list and compute
1S, NP, T)l.

5. For every pair (1, ) marked ‘complete’ compute isc(G[P (L, r)]) according
to equation (1).

6. Ford:=1tot,and for l:=1tot—d, if (1,14+d) is marked ‘incomplete’,
compute isc(G[P(1, 1+ d)]) according to equation (2).

7. Output isc(G) = isc(G[P(1,t)]).

Theorem 15. The above algorithm outputs the isolated scattering number
for an interval graph of order n with time complexity O(n?).

Proof: The correctness of this algorithm follows from Theorem 5 and
Lemma 14. Steps 1, 2, 5 and 7 can be done in time O(n*) in a straightforward
manner. In Step 3, testing connectedness and computing the components
can be done by an O(n + m) algorithm for at most n? graphs G[P(1,7)].
If G[P(1,7)] is disconnected and Pj is a component, then P; = P(1;,15),
1 <j <k, with lj = min{l(v) : v € P;} and r; = max{r(v) : v € P;} which can
be computed in time O(n). Hence, Step 3 can be done in time O(n?).

Step 4 has to be executed for at most n? triples (p,1,r) with L <p <. If
P(l,v) =S, # 0, then the set of components of G[P(1,7) — S,] is equal to
the union of the set of components of G[P(L,p)] and of the set of components
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of G[P(p+1,1)] or it is equal to one of these sets. Hence, the components of are
G[P(1,1)—S,] are computed by using the marks of (1,p) and (p+1, ), namely,
if the mark is ‘complete’ or ‘incomplete’, then (1, p) and (p+1, ), respectively,
are stored and if the mark is ‘disconnected’, then the corresponding linked
list is added. Thus the linked list of (p,1,7) can be computed in time O(n).
Since S, NP(L,7) is a minimal separator of G[P(L,7)] if and only if there are
at least two different connected components in the list of (p, 1, 1) such that
every vertex of S, N P(l,r) has a neighbour in both of these components
(Lemma 4). Because of the properties of a consecutive clique arrangement it
suffices to check that two components P; of G[P(1,p)] with the two largest
values of 1; and the two components of P; of G[P(p + 1,r)] with the two
smaller values of 1; (if they exist). This can be done in time O(n). Hence
Step 4 needs time O(n?).

Step 6 requires the evaluation of the right-hand side of equation (2) for at
most n? pairs (1,1 + d). For every p with Ll < p <1+ d and (p,1,1+ d)
marked ‘minimal’ the components P; of G[P(1,1 + d) — S,] can be obtained
in time O(n) from the linked list of (p,1,1+4 d). Each of the at most n
values isc(G[P;]) can be determined in constant time by table look-up since
the isolated scattering numbers of smaller pieces are already known. Thus
Zlf:l max{isc(G[G[Pi]), 1} =[S, N P(1, 1+ d)| can be evaluated in time O(mn).
Consequently, Step 6 of the algorithm can be done in time O(n?). [

4 Conclusion

Network vulnerability is an important issue in the area of distributed comput-
ing. Networks such as computer or communication networks are so designed
that they do not easily get disrupted under external attack and, moreover,
these are easily reconstructed when they do get disrupted. Most of the early
work in this area takes a probabilistic approach to the problem. However,
sometimes it is important to incorporate subjective vulnerability estimates
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into the measure. In this paper, we address a comparatively better parameter,
the isolated scattering number, which measures the vulnerability of networks,
and we give a polynomial time algorithm to compute the isolated scattering
number of interval graphs, a subclass of co-comparability graphs. As a useful
parameter, there are many problems remaining unsolved. One interesting
problem is to find isolated scattering number conditions for the existence of
certain factors in graphs.
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