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Abstract

We consider fast and accurate solution methods for the direct
and inverse scattering problems by a few three dimensional piecewise
homogeneous dielectric obstacles around the resonance region. The
forward problem is reduced to a system of second kind boundary
integral equations. For the numerical solution of these coupled integral
equations we modify a fast and accurate spectral algorithm, proposed
by Ganesh and Hawkins [doi:10.1016/j.jcp.2008.01.016], by transporting
these equations onto the unit sphere using the Piola transform of the
boundary parametrisations. The computational performances of the
forward solver are demonstrated on numerical examples for a variety of
three-dimensional smooth and non smooth obstacles. The algorithm,
that requires the knowledge of the boundary parametrisation and leads
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to invert small linear systems, is well-suited for the use of geometric
optimisation tools to solve the inverse problem of recovering the shape
of scatterers from the knowledge of noisy data. Computational details
for the application of the iteratively regularised Gauss–Newton method
to the numerical solution of the electromagnetic inverse problem are
presented. Numerical experiments for the shape detection of multiple
obstacles using incomplete radiation pattern data from back and front
side are provided. The results in this article can also be applied
for solving shape optimisation problems relying on time-harmonic
electromagnetic waves.
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1 Introduction

The problem to reconstruct the shape of scatterers from noisy far-field or near-
field measurements of time-harmonic waves arises in many fields of applied
physics, for example sonar and radar applications, bio-medical imaging, non
destructive testing or geophysical exploration. Such inverse problems are
severely ill-posed. Often they are formulated as a nonlinear least squares
problem, for which regularised iterative algorithm are applied to recover an
approximate solution.

The numerical treatment of the inverse problem requires a fast and accurate
solver for the forward problem. Here we consider the scattering of time-
harmonic waves at a fixed frequency ω by three-dimensional bounded and
non-conducting homogeneous dielectric obstacles represented by the domainΩ.
The scatterers consist of N > 1 disjoint bounded obstacles Ω` with a smooth
(of class C 2 at least) closed simply connected boundary Γ`, and we have
Ω =

⋃N
`=1Ω`. The boundary of Ω is Γ =

⋃N
`=1 Γ` where Γ` ∩ Γ` ′ = ∅ if

` 6= ` ′. The electric permittivity ε and the magnetic permeability µ are
assumed to take constant values in the interior and in the exterior of the
obstacles, but are discontinuous across the boundary Γ . The constant values
of ε and µ may even be different inside each obstacles. The wavenumber is
κ = ω

√
εµ . In this case the forward problem is described by the system of

Maxwell equations in the whole space R3, with natural transmission conditions
expressing the continuity of the tangential components of the magnetic and
electric fields (H,E) across the boundary Γ . Let Ωc denote the exterior
domain R3\Ω and n denote the outer unit normal vector on the boundary Γ .
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We label the dielectric quantities related to the interior domain Ω` by the
index ` and to the exterior domain Ωc by the index 0. For ` = 1, . . . ,N we
set µ` = µ|Ω` , κ` = κ|Ω` , and n` = n|Γ` . Eliminating the magnetic field in
the Maxwell system (H = 1/(iκ) curlE) we obtain the following transmission
problem: Given an incident electric wave Einc which is assumed to solve the
second order Maxwell equation in the absence of any dielectric scatterer,
find the interior electric fields E` = E|Ω` and the exterior scattered field
Es = E|Ωc − E

inc that satisfies

curl curlEs − κ2
0E

s = 0 in Ωc, (1a)

curl curlE` − κ2
`E
` = 0 in Ω`, for ` = 1, . . . ,N, (1b)

and the transmission conditions on Γ`,

n` × E` = n` × (Es + Einc), (1c)
1
µ`
n` × curlE` = 1

µ0
n` × curl(Es + Einc). (1d)

In addition the scattered field Es has to satisfy the Silver–Müller radiation
condition

lim
|x|→+∞ |x|

∣∣∣∣curlEs(x)× x

|x|
− iωµ0E

s(x)

∣∣∣∣ = 0 . (1e)

uniformly in all directions x/|x|.

Well-posedness of the dielectric obstacle scattering problem for any positive
real values of the dielectric constants is well known, and this problem can
be reduced in several different ways to coupled or single boundary integral
equations on the dielectric interface Γ : Harrington [23] and Martin and Ola [40]
overviewed these formulations for a single simply connected smooth boundary.
Some pairs of integral equations have irregular frequencies and others do
not, as the so-called Müller’s system [42]. Mautz [41] suggested that the
use of single combined-field integral equation method avoids the occurrence
of irregular frequencies. Existence of the solution was then proved by Ola
and Martin via a regularisation technique. For a Lipschitz boundary, Buffa,
Hiptmair, von Petersdorff and Schwab [4] derived a uniquely solvable system
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of integral equations and Costabel and Le Louër [8, 36] constructed a family of
four alternative single boundary integral equations extending a technique due
to Kleinman and Martin [33] in acoustic scattering. All these formulations
naturally extend to multiple obstacles and we focus here on Muller’s system,
namely the direct method, and its adjoint form, namely the indirect method.
These dielectric integral equations suffer from low-frequency break down.
Ganesh et al. [19] gave an all-frequency integral equation reformulation.

The radiation condition implies that the scattered field Es has an asymptotic
behaviour of the form [7, Theorem 6.8]

Es(x) =
eiκ0|x|

|x|

{
E∞(x̂) +O

(
1

|x|

)}
, |x|→∞,

uniformly in all directions x̂ = x/|x|. The far-field pattern E∞ is a tangential
vector function defined on the unit sphere S2 of R3 and is always analytic.

The forward problem discussed in this paper is the scattering of m incident
plane waves of the form Einc

j (x) = pj e
iκ0x·dj , j = 1, . . . ,m, where dj,pj ∈ S2

and dj · pj = 0. We denote by Fj the boundary to far-field operator that
maps a parametrisation of the boundary Γ onto the far-field pattern E∞j of
the scattered field Es

j of the solution
(
(E`j)16`6N,E

s
j

)
to the problem (1a)–(1e)

for the incident wave Einc
j . For simplicity we do not distinguish between the

boundary Γ and its parametrisation in this introduction. The inverse problem
consists in reconstructing Γ given noisy measured data described by

E∞j,δ = Fj(Γ) + errj , j = 1, . . . ,m,

m∑
j=1

‖ errj ‖2 6 δ2 . (2)

Here measurement errors are described by the functions errj, and the error
bound δ, the incident fields Einc

j , and the dielectric constants are assumed to
be known. In practice, equation (2) is posed on a subset Γobs of the far-field
sphere S2. By straightforward modifications of the algorithm described in
Section 5, one could simultaneously invert for Γ and the dielectric constants [1,
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Section 3.2]. In this situation Hähner [21] showed a uniqueness result assuming
knowledge of the far-field patterns for all incoming plane waves. However,
even with known dielectric constants it remains an open question whether
or not Γ is uniquely determined by only a finite number of incoming plane
waves.

Over the last two decades, much attention has been devoted to the investi-
gation of efficient iterative methods, in particular regularised Newton-type
method for nonlinear ill-posed problems via first order linearisation [3, 27,
28, 32]. Until now, it was successfully applied to inverse acoustic scattering
problems [22, 28]. Indeed, the use of such iterative methods requires the
analysis and an explicit form of the Fréchet derivatives of the boundary to
far-field operators Fj. The Fréchet derivative of the far-field pattern is usually
interpreted as the far-field pattern of a new scattering problem and these
characterisations are well-known in acoustic scattering since the 1990s. Many
different approaches were used: Fréchet differentiability of the far-field (or
of the solution away from the boundary) was established by Kirsch [32] and
Hettlich [24, 25] via variational methods, by Potthast via boundary integral
representations [45, 47], by Hohage [28] and Schormann [29] via the implicit
function theorem, and by Kress and Päivärinta via Green’s theorem and a
far-field identity [35].

In electromagnetism, Fréchet differentiability was first investigated by Pot-
thast [46] for the perfect conductor problem extending the boundary integral
equation approach. The characterisation of the derivative was then improved
by Kress [34]. More recently, Fréchet differentiability was analyzed by Haddar
and Kress [20] for the Neumann-impedance type obstacle scattering problem
via the use of a far-field identity and by Costabel and Le Louër [9, 10, 36] and
Hettlich [26] for the dielectric scattering problem via the boundary integral
equation approach [8, 36] and variational methods, respectively.

This paper applies the iteratively regularised Gauss–Newton (irgn) method,
combined with a fast forward solver, to solve the inverse scattering problem
for multiple dielectric obstacles. Section 2 describes the two different bound-
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ary integral equation methods that are used to solve the electromagnetic
transmission problem via direct and indirect approaches. Section 3 proposes
a new spectral method to solve these systems which ensures super-algebraic
convergence of the discrete solution to the exact solution, in the case of multi-
ple simply connected closed surfaces. The idea of the method originates from
Atkinson’s work [2], where he suggested a Galerkin method for the Laplace
equation using spherical harmonics as basis functions. Many advances on
that subject led to the high-order algorithm proposed by Ganesh and Gra-
ham [12] for the Helmholtz equation and to the one proposed by Ganesh
and Hawkins [16] for the Maxwell equations, in the context of the perfect
conductor problem. They proposed first two methods by transporting the
boundary integral equation on the unit sphere using a change of variable and
then by looking for a solution in terms of series (component-wise) of scalar
spherical harmonics [13] or of series of vector spherical harmonics [14, 15]. To
decrease the number of unknowns, they introduce a normal transformation
acting from the tangent plane to the boundary Γ onto the tangent plane to
the unit sphere, so that one only has to seek a solution in terms of tangential
vector spherical harmonics [16]. The latter approach was extended to the
solution of the scattering problem by multiple perfect conductors [17]. Here
we use a different approach based on the Piola transform of a diffeomorphism
from S2 to Γ that maps the energy space H−1/2

div (Γ), defined in Section 2, onto
the space H−1/2

div (S2). The numerical implementation is briefly described in
Section 4 and numerical results on the convergence rate of the method are
presented for smooth and non smooth obstacles. The mathematical analysis
renders even possible the implementation of hypersingular kernels [37, 38].
However, in the extreme low-frequency regime, as ω→ 0, numerical meth-
ods that use only tangential basis functions are not sufficient to avoid the
low-frequency breakdown [19].

In Section 5 we recall the main results on the Fréchet differentiability of
the boundary to far-field operator and give a characterisation of the adjoint
operator which is needed in the implementation of the regularised Newton
method. Section 6 presents the inverse scattering algorithm in the special case
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of star-shaped obstacles that are also described by spherical harmonics. The
properties of the Piola transform allows analytical numerical evaluation of
boundary data characterising the Fréchet derivatives. The forward algorithm
consists of many nested loops, so the running speed of the whole inverse
algorithm is improved using parallel computations. Numerical experiments
are presented in Section 7. Finally, Section 8 concludes with some remarks
and possible research lines.

2 The solution of the dielectric obstacle
scattering problem

We denote by Hs(Ω), Hsloc(Ω
c) and Hs(Γ) the standard (local in the case

of the exterior domain) complex valued, Hilbertian Sobolev space of order
s ∈ R defined on Ω, Ωc and Γ respectively (with the convention H0 = L2.)
Spaces of vector functions are denoted by boldface letters, thus Hs = (Hs)3.
Moreover, Hst (Γ) := {ϕ ∈ Hs(Γ) : ϕ · n = 0} denotes the Sobolev space of
tangential vector fields of order s ∈ R. For a differential operator Λ we set

H(Λ,Ω) = {v ∈ L2(Ω) : Λv ∈ L2(Ω)},

Hloc(Λ,Ω
c) = {v ∈ L2

loc(Ω
c) : Λv ∈ L2

loc(Ω
c)}.

The space H(Λ,Ω) is endowed with the natural graph norm ‖v‖2
H(Λ,Ω) :=

‖v‖2
L2(Ω)+‖Λv‖2

L2(Ω). This defines in particular the Hilbert spacesH(curl,Ω)

andH(curl curl,Ω) and Fréchet spacesHloc(curl,Ωc) andHloc(curl curl,Ωc).
Analogously, we introduce the Hilbert space

H
−1/2
div (Γ) =

{
ϕ ∈ H−1/2

t (Γ) : divΓ ϕ ∈ H−1/2(Γ)
}

endowed with the norm ‖ · ‖
H

−1/2
div (Γ)

= (‖ · ‖2
H−1/2(Γ)

+‖ divΓ ·‖2
H−1/2(Γ)

)1/2. We
have

ϕ ∈ H−1/2
div (Γ)⇔ for all ` = 1, . . . ,N , ϕ` = ϕ|Γ` ∈ H

−1/2
div (Γ`).
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Recall that for a vector function u ∈ H(curl,Ω) ∩ H(curl curl,Ω), the
traces n× u|Γ and n× curlu|Γ are in H−1/2

div (Γ) [43, e.g.].

LetΦ(κ, x) = eiκ|x|

4π|x|
denote the fundamental solution of the Helmholtz equation

∆u+ κ2u = 0 . Any radiating solution Es to the Maxwell equation (1a)–(1e)
in Ωc satisfies the Stratton–Chu representation formula

Es =

N∑
`=1

[
M`
κ0

(
n` × Es

|Γ`

)
+
µ0

κ0

C`κ0

(
1

µ0

n` × (curlEs)|Γ`

)]∣∣Ωc , (3)

where C`κ and M`
κ are, respectively, the single and double layer potential

operators defined for any tangential density ϕ ∈ H−1/2
div (Γ`) and x ∈ R3\Γ` by

(C`κϕ)(x) =
1

κ

∫
Γ`

curl curlx{Φ(κ, x− y)ϕ(y)}dσ(y) ,

(M`
κϕ)(x) =

∫
Γ`

curlx{Φ(κ, x− y)ϕ(y)}dσ(y) .

By Green’s second formula in Ω, for x ∈ Ωc,

0 =

N∑
`=1

[
M`
κ0

(
n` × Einc

|Γ`

)
+
µ0

κ0

C`κ0

(
1

µ0

n` × (curlEinc)|Γ`

)]∣∣Ωc(x). (4)

Adding (3) and (4) we obtain the following integral representation for the
scattered wave

Es =

N∑
`=1

[
M`
κ0

(
n` × (Es + Einc)|Γ`

)
+
µ0

κ0

C`κ0

(
1

µ0

n` × (curlEs + curlEinc)|Γ`

)]∣∣Ωc . (5)

Analogously, for solutions E` to Maxwell’s equations (1b) in the interior
domain Ω`, for ` = 1, . . . ,N, the Stratton–Chu representation formula reads

E∣̀∣Ω` = −

[
µ`

κ`
C`κ`

(
1

µ`
n` × (curlE`)|Γ`

)
+M`

κ`

(
n` × E`|Γ`

)]∣∣Ω` , (6)
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and the Green’s second formula in Ω`, for ` = 1, . . . ,N, gives

0 = −

[
µ`

κ`
C`κ`

(
1

µ`
n` × (curlE`)|Γ`

)
+M`

κ`

(
n` × E`|Γ`

)]
(x), x ∈ R3\Ω` .

(7)
By (5) and (6), one can see that the solution of the forward problem is
uniquely determined by the knowledge of the interior boundary values n` ×
E`|Γ` and 1

µ`
n` × (curlE`)|Γ` and the exterior boundary values n` × (Es +

Einc)|Γ` and 1
µ0
n` × curl(Es + Einc)|Γ` , for ` = 1, . . . ,N. Thanks to the

transmission conditions (1c) one can reduce in several different ways the
dielectric scattering problem to a system of N coupled equations posed on Γ`.
The most attractive boundary integral formulation of the problem via a
direct method is Müller’s [42] since it yields a uniquely solvable system of
boundary integral equations of the second kind for all positive values of the
dielectric constants. Direct methods has the additional advantage to provide
the physical boundary data of the total field solution.

To derive the boundary integral formulation we introduce the single layer
potential C`κ and the double layer potential M`

κ in electromagnetic potential
theory defined by

(C`κϕ)(x) =
1

κ

∫
Γ`

n`(x)× curlx curlx{2Φ(κ, x− y)ϕ(y)}ds(y),

(M`
κϕ)(x) =

∫
Γ`

n`(x)× curlx{2Φ(κ, x− y)ϕ(y)}ds(y).

(The factor 2 in the definition of C`κ andM`
κ avoids the occurrence of a factor 1

2

in the Calderón formula and then in the boundary integral equations system.)
The operator M`

κ : H
−1/2
div (Γ`)→ H

−1/2
div (Γ`) is compact and the operator C`κ

is of order +1 but bounded on H−1/2
div (Γ`). The Calderón projectors for the

time-harmonic Maxwell equation (1b) are P` = I−A` and Pc
` = I+A` where

A` =

[
M`
κ`

C`κ`
C`κ` M`

κ`

]
.



2 The solution of the dielectric obstacle scattering problem E11

From (6) and (7) we deduce

P`

[
n` × E`|Γ`

1
κ`
n` × curlE`|Γ`

]
=

[
2n` × E`|Γ`

2
κ`
n` × curlE`|Γ`

]
, Pc

`

[
n` × E`|Γ`

1
κ`
n` × curlE`|Γ`

]
= 0 .

(8)
The Calderón projectors, on the boundary Γ`, for the time-harmonic Maxwell
equation (1a) are defined for any densities ϕ := (ϕ`)16`6N ∈ H−1/2

div (Γ) and
ψ := (ψ`)16`6N ∈ H−1/2

div (Γ) by

P0,`

[
ϕ
ψ

]
= (I−A`0)

[
ϕ`
ψ`

]
−
∑
` ′ 6=`

A
`,` ′

0

[
ϕ` ′

ψ` ′

]
,

Pc
0,`

[
ϕ
ψ

]
= (I+A`0)

[
ϕ`
ψ`

]
+
∑
` ′ 6=`

A
`,` ′

0

[
ϕ` ′

ψ` ′

]
,

where A`0 and A
`,` ′

0 are defined by

A`0 =

[
M`
κ0

C`κ0
C`κ0 M`

κ0

]
and A

`,` ′

0 =

[
2R` 0
0 2R`

] [
M` ′
κ0

C`
′
κ0

C`
′
κ0

M` ′
κ0

]
,

and R` is the operator defined by R`E = n` × E|Γ` . Then, from (5) we deduce

P0,`

[
n× (Es + Einc)|Γ

1
κ0
n× curl(Es + Einc)|Γ

]
=

[
2n` × Einc

|Γ`
2
κ0
n` × curlEinc

|Γ`

]
. (9)

Now we set

us
` =

[
n` × Es

|Γ`
1
µ0
n` × curlEs

|Γ`

]
, uinc

` =

[
n` × Einc

|Γ`
1
µ0
n` × curlEinc

|Γ`

]
,

ui
` =

[
n` × E`|Γ`

1
µ`
n` × curlE`|Γ`

]
.
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By virtue of (8) and (9) for ` = 1, . . . ,N

0 =

[
µ0κ

2
`

µ`κ
2
0

0

0 κ`
µ0

]
Pc
`

[
1 0
0 µ`

κ`

]
ui
`, (10)

2uinc
` =

[
1 0
0 κ0

µ0

]
P0,`

[
1 0
0 µ0

κ0

]
(us + uinc) , (11)

and the transmission conditions give

ui
` = u

s
` + u

inc
` . (12)

Müller’s boundary integral formulation has to be solved for the unknowns
us
` + u

inc
` and is obtained by substituting (12) into (10) and combining the

equalities (10) and (11) for ` = 1, . . . ,N as follows:(1+ µ0κ
2
`

µ`κ
2
0

)
I−

(
M`
κ0

−
µ0κ

2
`

µ`κ
2
0
M`
κ`

)
−µ0

κ20
(κ0C

`
κ0

− κ`C
`
κ`
)

− 1
µ0
(κ0C

`
κ0

− κ`C
`
κ`
)

(
1+ µ`

µ0

)
I−

(
M`
κ0

− µ`
µ0
M`
κ`

)
· (us

` + u
inc
` ) − 2

∑
` ′ 6=`

[
R`M

` ′
κ0

µ0

κ0
R`C

` ′
κ0

κ0
µ0
R`C

` ′
κ0

R`M
` ′
κ0

]
(us
` ′ + u

inc
` ′ ) = 2uinc

` . (13)

Since κ`C`κ` − κ0C
`
κ0

is compact on H−1/2
t (Γ`) for ` = 1, . . . ,N, the integral

operator associated to the system of N coupled equations (13) is a Fredholm
operator of the second kind on the Hilbert space H−1/2

t (Γ). The condition
uinc
` ∈

(
H

−1/2
div (Γ`)

)2 guarantees that the solution to the integral equation is
in
(
H

−1/2
div (Γ)

)2 too.

We present now an alternative approach via an indirect method in order
to derive another second kind system of integral equations [40]. Indirect
methods are used to solve electromagnetic transmission problem with general
transmission conditions on Γ` of the form

n` × Es
|Γ`

− n` × E`|Γ` = f`,
1

µ0

n` × curlEs
|Γ`

−
1

µ`
n× curlE`|Γ` = g`,

(14)
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where the given boundary data f`,g` ∈ H
−1/2
div (Γ`) are non physical quantities

as in the characterisation of the Fréchet derivatives (28). In our case the
indirect approach is based on the layer ansatz

Es =

N∑
`=1

[
M`
κ0
ϕs
`+
µ0

κ0

C`κ0ψ
s
`

]∣∣Ωc and E`|Ω` =
[
M`
κ`
ϕi
`+
µ`

κ`
C`κ`ψ

i
`

]∣∣Ω` , (15)

where for ` = 1, . . . ,N, ϕs
`,ψ

s
`,ϕ

i
`,ψ

i
` are tangential densities in H−1/2

div (Γ`).
By virtue of (3) and (6) and the jump relations of the electromagnetic
potentials

P`

[
ϕi
`

µ`
κ`
ψi
`

]
=

[
−2n` × E`|Γ`

− 2
κ`
n` × curlE`|Γ`

]
and Pc

0,`

[
ϕs

µ0

κ0
ψs

]
=

[
2n` × Es

|Γ`
2
κ0
n` × curlEs

|Γ`

]
.

The transmission conditions yields[
1 0
0 κ`

µ`

]
P`

[
ϕi
`

µ`
κ`
ψi
`

]
+

[
1 0
0 κ0

µ0

]
Pc

0,`

[
ϕs

µ0

κ0
ψs

]
= 2

[
f̀
g`

]
.

We set ϕi
` =

µ`
µ0
ϕ`, ϕs

` = ϕ` and ψ
i
` =

µ0κ
2
`

µ`κ
2
0
ψ`, ψ

s
` = ψ`. Then we arrive at

the following system of integral equations first obtained by Ola and Martin [40]
for the single scattering problem:(1+ µ0κ

2
`

µ`κ
2
0

)
I+

(
M`
κ0

−
µ0κ

2
`

µ`κ
2
0
M`
κ`

)
1
µ0
(κ0C

`
κ0

− κ`C
`
κ`
)

µ0

κ20
(κ0C

`
κ0

− κ`C
`
κ`
)

(
1+ µ`

µ0

)
I+

(
M`
κ0

− µ`
µ0
M`
κ`

)[ψ`
ϕ`

]

+ 2
∑
` ′ 6=`

[
R`M

` ′
κ0

κ0
µ0
R`C

` ′
κ0

µ0

κ0
R`C

` ′
κ0

R`M
` ′
κ0

][
ψ` ′
ϕ` ′

]
= 2

[
g`
f̀

]
. (16)

Remark 1. Let us compare the system matrix KDM of the direct method in (13)
and the system matrix KIM of the indirect method in (16). Let >K := K∗f

denote the adjoint of an operator K with respect to the bilinear rather than the
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sesquilinear L2 product and recall that >M`
κ = R`M

`
κR` and >C`κ = R`C

`
κR`.

We set R = diag
([
R1 0
0 R1

]
, . . . ,

[
RN 0
0 RN

])
. Using this and the identity R2 = −I

we find that
>KIM = −RKDM R . (17)

This relation is useful in the context of iterative regularisation methods for
the inverse problem where both systems with the operator KDM and with
the operator KIM have to be solved in each iteration step. If these operators
are essentially represented by transposed matrices, then only one matrix has
to be set up and only one lu decomposition has to be computed when the
discrete linear systems are solved by Gaussian elimination.

It follows from the representation formula (5) and the ansatz (15) that the
far-field pattern is computed via the integral representation formulas

E∞ =

N∑
`=1

G`(us
` + u

inc
` ) if one solves (13), or

E∞ =

N∑
`=1

G`
[ϕ`
ψ`

]
if one solves (16),

using the far-field operator G` :
(
H

−1/2
div (Γ`)

)2 → L2
t (S2) defined for x̂ ∈ S2 by

G`
[
ϕ`
ψ`

]
(x̂) =

µ0

4π

∫
Γ`

e−iκ0x̂·y
(
x̂×ψ`(y)× x̂

)
ds(y)

+
iκ0

4π

∫
Γ`

e−iκ0x̂·y
(
x̂×ϕ`(y)

)
ds(y) .

Definition 2. Although in general a× (b× c) = (a · c)b− (a · b)c is different
from (a × b) × c for a,b, c ∈ R3, both expressions coincide for a = c. The
unit vector a× (b× a) = (a× b)× a is the orthogonal projection of b onto
the plane orthogonal to a and is denoted by a× b× a.



3 Spherical reformulation of the boundary integral equations E15

3 Spherical reformulation of the boundary
integral equations

The first step in the derivation of our algorithm is to transport on the unit
sphere S2 each of the integral equations on Γ`, for ` = 1, . . . ,N, derived in
Section 2.

We denote by θ,φ the spherical coordinates of any point x̂ ∈ S2, that is,

x̂ = ψ(θ,φ) = (sin θ cosφ, sin θ sinφ, cos θ), (18)

for (θ,φ) ∈ ]0,π[×[0, 2π[∪ {(0, 0), (0,π)}. The tangent and the cotangent
planes at any point x̂ = ψ(θ,φ) ∈ S2 is generated by the unit vectors
eθ = ∂ψ

∂θ
(θ,φ) and eφ = 1

sinθ
∂ψ
∂φ

(θ,φ). The triplet (x̂,eθ,eφ) forms an
orthonormal system. The determinant of the Jacobian is Jψ(θ,φ) = sin θ.

Let q : S2 → Γ` be a parametrisation of class C 1 at least. We use the notation
of Appendix A. The total derivative [Dq(x̂)] maps the tangent plane T x̂ to S2

at the point x̂ onto the tangent plane Tq(x̂) to Γ` at the point q(x̂). The
latter is generated by the vectors

t1(x̂) = e1(q(x̂)) =
∂q ◦ψ
∂θ

◦ψ−1 = [Dq(x̂)]eθ ,

t2(x̂) =
1

Jψ ◦ψ−1(x̂)
e2(q(x̂)) =

1

Jψ ◦ψ−1(x̂)

∂q ◦ψ
∂φ

◦ψ−1 = [Dq(x̂)]eφ .

The determinant Jq of the Jacobian of the change of variables q : S2 → Γ`
and the normal vector n` ◦ q is computed via

Jq =
Jq◦ψ ◦ψ−1

Jψ ◦ψ−1
=
∣∣t1 × t2∣∣ and n` ◦ q =

(e1 ◦ q)× (e2 ◦ q)
Jq◦ψ ◦ψ−1

=
t1 × t2
Jq

.

The parametrisation q : S2 → Γ` being a diffeomorphism, we set [Dq(x̂)]−1 =
[Dq−1] ◦ q(x̂). The transposed matrix [Dq(x̂)∗]−1 maps the cotangent plane T ∗x̂
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to S2 at the point x̂ onto the cotangent plane T ∗q(x̂) to Γ` at the point q(x̂).
The latter is generated by the vectors

t1(x̂) = e1(q(x̂)) =
1

Jq◦ψ ◦ψ−1
e2(q(x̂))× n`(q(x̂))

=
t2(q(x̂))× n`(q(x̂))

Jq(x̂)
= [Dq(x̂)∗]−1eθ ,

t2(x̂) = Jψ ◦ψ−1(x̂)e2(q(x̂)) =
n`(q(x̂))× t1(q(x̂))

Jq(x̂)
= [Dq(x̂)∗]−1eφ .

In view of the formulas (31)–(34), it is straightforward to deduce the following
transformation formulas for the surface differential operators:

(gradΓ` u) ◦ q = [Dq∗]−1 gradS2(u ◦ q),

(curlΓ` u) ◦ q =
1

Jq
[Dq] curlS2(u ◦ q),

(divΓ` v) ◦ q =
1

Jq
divS2

(
Jq [Dq]

−1(v ◦ q)
)
,

(curlΓ`w) ◦ q =
1

Jq
curlS2

(
[Dq∗](w ◦ q)

)
. (19)

From this we now introduce a boundedly invertible operator from H−1/2
div (Γ`)

toH−1/2
div (S2). First recall thatH−1/2

div (Γ`) admits the Hodge decomposition [11]

H
−1/2
div (Γ`) = gradΓ` H

3/2(Γ`)⊕ curlΓ` H
1/2(Γ`) (20)

provided that the surface Γ` is smooth and simply connected. A first transfor-
mation, which intertwines with the Hodge decomposition, is the following:

H
−1/2
div (Γ`) −→ H

−1/2
div (S2)

ϕ = gradΓ` p1 + curlΓ` p2 7→ ϕ = [Dq∗](gradΓ` p1) ◦ q
+ Jq[Dq]

−1(curlΓ` p2) ◦ q
= gradS2 (p1 ◦ q) + curlS2(p2 ◦ q).
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This transformation was first considered by Costabel and Le Louër [10] in
the context of the shape differentiability analysis of the boundary integral
operators Mκ and Cκ. However, for the numerical solution of boundary
integral equations it is inconvenient as it requires explicit knowledge of the
Hodge decomposition. Therefore, we use a second transformation, the so-
called Piola transform of q, introduced in the following Lemma 3.

Lemma 3. The linear mapping

Pq : H
−1/2
div (Γ`) −→ H

−1/2
div (S2)

ϕ 7→ ϕ = Jq[Dq]
−1(ϕ ◦ q). (21)

is well-defined and bounded and has a bounded inverse P−1
q : H

−1/2
div (S2) →

H
−1/2
div (Γ`), P−1

q ϕ = ( 1
Jq
[Dq]ϕ)◦q−1. Moreover Pq

(
Ker[divΓ`(H

−1/2
t (Γ`)]

)
=

Ker[divS2(H
−1/2
t (S2)].

Proof: To see that ϕ belongs to H−1/2
div (S2), write ϕ = gradΓ` p1+curlΓ` p2

with p1 ∈ H3/2(Γ`) and p2 ∈ H1/2(Γ`) according to (20) and note that

divS2 Jq[Dq]
−1(curlΓ` p2) ◦ q = divS2 curlS2(p2 ◦ q) = 0

using (37). As Jq[Dq]−1(gradΓ` p1) ◦ q ∈ H1/2(S2) it follows that divS2 ϕ ∈
H−1/2(S2), and ϕ ∈ H−1/2

t (Γ`) implies ϕ ∈ H−1/2
t (S2). The boundedness

of Pq is straightforward. The proof for P−1
q = Pq−1 is analogous. ♠

We construct our spectral method by replacing the boundary integral opera-
tors M`

κ and C`κ in (13) and (16) by the operators

M`
κ := PqM

`
κP

−1
q and C`κ := PqC

`
κP

−1
q
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which map H−1/2
div (S2) boundedly into itself and are

M`
κϕ` = Jq[Dq]

−1

∫
S2
(n` ◦ q)× curl{2Φ(κ,q(·) − q(ŷ))[Dq(ŷ)]ϕ`(ŷ)}ds(ŷ) ,

C`κϕ` = κ Jq[Dq]
−1

∫
S2
(n` ◦ q)× {2Φ(κ,q(·) − q(ŷ))[Dq(ŷ)]ϕ`(ŷ)}ds(ŷ)

+
1

κ
Jq[Dq]

−1

∫
S2
(n` ◦ q)× grad div{2Φ(κ,q(·) − q(ŷ))[Dq(ŷ)]ϕ`(ŷ)}ds(ŷ) .

In our case we implement the compact operatorsM`
κ`
,M`

κ0
and κ0C

`
κ0

− κ`C
`
κ`
.

Let q` and q` ′ be the spherical parametrisations of two disjoint boundaries Γ`
and Γ` ′ . The operators 2R`M` ′

κ and 2R`C
` ′
κ are replaced by the operators

M`,` ′

κ := 2Pq`R`M
` ′

κP
−1
q` ′

and C`,`
′

κ := 2Pq`R` C
` ′

κP
−1
q` ′

defined by

M`,` ′

κ ϕ` ′ = Jq` [Dq`]
−1

∫
S2
(n` ◦ q`)

× curl{2Φ(κ,q`(·) − q` ′(ŷ))[Dq` ′(ŷ)]ϕ` ′(ŷ)}ds(ŷ) ,

C`,`
′

κ ϕ` ′ = κ Jq` [Dq`]
−1

∫
S2
(n` ◦ q`)

× {2Φ(κ,q`(·) − q` ′(ŷ))[Dq` ′(ŷ)]ϕ` ′(ŷ)}ds(ŷ)

+
1

κ
Jq` [Dq`]

−1

∫
S2
(n` ◦ q`)

× grad div{2Φ(κ,q`(·) − q` ′(ŷ))[Dq` ′(ŷ)]ϕ` ′(ŷ)}ds(ŷ) .

In our case we have to implement the smooth operators M`,` ′
κ0

, C`,` ′κ0
for all

`, ` ′ = 1, . . . ,N with ` 6= ` ′. The new unknowns are tangential vector densities
in H−1/2

div (S2) obtained by applying the operator (21) to the unknowns in (13)
and (16).
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The parametrised form of the far-field operator G` is G`
[
ϕ`
ψ`

]
= G`1ϕ`+G

`
2ψ`

with (
G`1ϕ`

)
(x̂) =

iκ0

4π

∫
S2
e−iκ0x̂·q`(ŷ)x̂×

[
[Dq`(ŷ)]ϕ`(ŷ)

]
ds(ŷ) ,(

G`2ψ`

)
(x̂) =

µ0

4π

∫
S2
e−iκ0x̂·q`(ŷ)x̂×

[
[Dq`(ŷ)]ψ`(ŷ)

]
× x̂ds(ŷ) .

4 Fully discrete Galerkin method and
examples

In this section we discuss the implementation of the spherical reformulation of
the equations described above and present some results to show the accuracy
of the method.

To solve the parametrised boundary integral equation systems we extend
the spectral algorithm of Ganesh and Graham [12] to the vector case, which
ensures spectrally accurate convergence of the discrete solution for second
kind scalar integral equations. With an alternative method this was done by
Ganesh and Hawkins [16] for the perfect conductor problem. For both of the
boundary integral equation systems, it consists in the approximation of the
2N equations in the subspace Tn ⊂ H−1/2

div (S2) of finite dimension 2(n+1)2−2

spanned by the orthonormal tangential vector spherical harmonics
(
Y

(1)
l,j =

1√
l(l+1)

gradS2 Yl,j
)

16l6n, |j|6l and
(
Y

(2)
l,j = 1√

l(l+1)
curlS2 Yl,j

)
16l6n, |j|6l of

degree at most n (Appendix B).

We denote by (· | ·)n the discrete inner product [16, Eq. (3.9)] on Tn and
by On the projection operators on Tn [16, Eq. (3.11)] defined by Ganesh et al.
The first step of the algorithm consists in interpolating the integrand of the
boundary integral operators with a weakly singular kernel by (componentwise)
series of scalar spherical harmonics of degree at most n ′ = 2n + 1 and
n > 5. These values are the theoretical constraints required on n and n ′ for
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convergence analysis [15, 16]. The resulting operators are labelled by the lower
index n ′. In a second step we project all the operators on the solution space Tn
by applying On. Depending on the shape and size of the boundaries Γ` for
` = 1, . . . ,N, we may need different order n` of vector spherical harmonics to
achieve similar accuracy. Any density in Tn` is uniquely determined by its
2[(n`+ 1)2 − 1] coefficients. Finally, the systems (13) and (16) are discretized
into
∑N
`=1 4

(
(n` + 1)2 − 1

)
equations for the

∑N
`=1 4

(
(n` + 1)2 − 1

)
unknown

coefficients by applying the scalar product (· | Y(1)
l,j )n` and (· | Y(2)

l,j )n` , for
l = 1, . . . ,n` and j = −l, . . . , l to each equation.

The discrete approximation M`,` ′
κ of the operator M`

κ,n ′`
(when ` = ` ′)

or M`,` ′

κ,n ′
` ′
is of the form

M`,` ′

κ =

[
M1,1 M1,2

M2,1 M2,2

]
,

where Ma,b, for a,b = 1, 2 is a
(
(n`+ 1)2 − 1

)
×
(
(n` ′ + 1)2 − 1

)
matrix. The

coefficients of Ma,b, for 1 6 l 6 n`, 1 6 l ′ 6 n` ′ , |j| 6 l and |j ′| 6 l ′ are

Ml ′j ′lj
a,b = (On`M

`
κ,n ′`

Y
(a)
l ′,j ′ ,Y

(b)
l,j )n` (when ` = ` ′) or

Ml ′j ′lj
a,b = (On`M

`,` ′

κ,n ′`
Y

(a)
l ′,j ′ ,Y

(b)
l,j )n` .

We use the same procedure to implement the discrete approximations (κ0C
`,`
κ0
−

κ`C
`,`
κ`
) and C`,`

′
κ0

of the operators (κ0C
`
κ0

− κ`C
`
κ`
) and C`,`

′
κ0

, respectively.

The discrete approximations of the operators KDM and KIM in (13) and (16)
are denoted by KDM =

(
K`,`

′

DM

)
16`,` ′6N

and KIM =
(
K`,`

′

IM

)
16`,` ′6N

. The

block matrices K`,`
′

DM and K`,`
′

IM , where ` represents the line rank and ` ′ is the
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column rank, are defined by

K`,`DM =

(1+ µ0κ
2
`

µ`κ
2
0

)
I 0

0
(
1+ µ`

µ0

)
I


−

[
M`,`
κ0

−
µ0κ

2
`

µ`κ
2
0
M`,`
κ`

µ0

κ20
(κ0C

`,`
κ0

− κ`C
`,`
κ`
)

1
µ0
(κ0C

`,`
κ0

− κ`C
`,`
κ`
) M`,`

κ0
− µ`
µ0
M`,`
κ`

]
,

K`,`IM =

(1+ µ0κ
2
`

µ`κ
2
0

)
I 0

0
(
1+ µ`

µ0

)
I


+

[
M`,`
κ0

−
µ0κ

2
`

µ`κ
2
0
M`,`
κ`

1
µ0
(κ0C

`,`
κ0

− κ`C
`,`
κ`
)

µ0

κ20
(κ0C

`,`
κ0

− κ`C
`,`
κ`
) M`,`

κ0
− µ`
µ0
M`,`
κ`

]
,

and for ` 6= ` ′ K`,`
′

DM = −

[
M`,` ′
κ0

µ0

κ0
C`,`

′
κ0

κ0
µ0
C`,`

′
κ0

M`,` ′
κ0

]
,

K`,`
′

IM =

[
M`,` ′
κ0

κ0
µ0
C`,`

′
κ0

µ0

κ0
κ0C

`,` ′
κ0

M`,` ′
κ0

]
.

The discrete approximation of the right-hand side 2(g`, f̀ ) on Γ` of one of the
boundary integral equation system is the vector 2(g`, f`) = 2(g`,1, g`,2, f`,1, f`,2)
whose coefficients are

gljk = (On`
(
Pq`g`

)
| Y

(k)
lj )n` and f ljk = (On`

(
Pq`f`

)
| Y

(k)
lj )n`

for k = 1, 2, l = 1, . . . ,n` and j = −l, . . . , l.

The discrete approximation of G` evaluated at the Nobs observation points
x̂sobs ∈ S2 is G` =

[
G`1,1 G`1,2 G`2,1 G`2,2

]
, where G`a,b, for a,b = 1, 2 is a

3Nobs × 2((n` + 1)2 − 1) matrix. The coefficients of G`a,b, for a,b = 1, 2,
1 6 l 6 n`, |j| 6 l and s = 1, . . . ,Nobs are

Gs lj1,b =
(
G`1Y

(b)
lj

)
(x̂sobs), Gs lj2,b =

(
G`2Y

(b)
lj

)
(x̂sobs).
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Table 2, 3 and 4 and exhibits fast convergence for the far-field pattern E∞
for dielectric spheres and other boundaries with parametric representations
given either in Table 1 or by Ganesh and Graham [12]. As a first test,
using the indirect method, we compute the electric far-field denoted, E∞ps,
created by an off-center point source located inside one of the dielectric
particles: Einc(x) = gradΦ(κ0, x − s) × p, s ∈ Ω, and p ∈ S2. In this
case the total exterior wave has to vanish so that the far-field pattern of
the scattered wave Es is the opposite of the far-field pattern of the incident
wave: E∞exact(x̂) = − iκ0

4π
e−iκ0x̂·s (x̂× p). We choose s =

(
1, 0.1

2
− 1, 0.1

√
3

2
− 1
)

and p = (1, 0, 0). Table 2 lists the L∞ error (by taking the maximum of
errors obtained over 1300 observed directions, that is, we consider Nobs =
2(nmeas + 1)2 gauss quadrature points with nmeas = 25).

As a second example, using the direct method, we compute the electric far-field
denoted, E∞pw, created by the scattering of an incident plane wave. Table 2
shows the real part and the imaginary part of the polarisation component
of the electric far-field evaluated at the incident direction: [E∞pw(d)]n · p.
We choose d =

(
0,−1, 0

)
and p = (1, 0, 0). In the case of the sphere, the

analytical representation of the far-field pattern is given by a Mie series [39],
then Table 3 and Table 4 indicates the L∞ error.

The experiments were realised with Matlab programming language using
parallel for-loops for the matrix setup. In the resonance region (with a
wavelength close to the size of the obstacles) and with a small number of
obstacles, the simulation of an accurate approximate solution takes from a few
seconds to a few minutes of cpu time using a 2.67GHz Intel Xeon processor
with 20 workers. This is illustrated in Table 2 where the scattering by four
dielectric particles is considered. The exterior parameters are κ0 = π and
µ0 = 1. Inside the peanut µ1 = 1 and κ1 = 1.2κ0, whereas inside the bean
µ2 = 0.9 and κ2 = 2κ0, inside the rectangle µ3 = 1.1, κ3 = 1.5κ0, and inside
the tetrahedron µ4 = 1.5, κ4 = 0.7κ0. All these obstacles have a diameter
close to half of the wavelength l = 2π

κ0
= 2. The separation distance between

the particles varies between 0.5l and 1.5l. The results show that by setting
n ≈ 10 for the four obstacles one generates synthetic data, that are used in
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Table 1: Parametric representation of the dielectric interfaces for various
surfaces [12, 44]
peanut q1 ◦ψ(θ,φ) = (−1, 1, 0) + r(θ)(sin θ cosφ, 2 sin θ sinφ, cos θ),

r(θ) = 0.5(1+
√
1.25)−1/2

(
cos(2θ) +

√
1+ cos2(2θ)

) 1
2 ;

bean q2 ◦ψ(θ,φ) =
(0, 0, 2) + 0.6(A(θ) sin θ cosφ,B(θ) sin θ sinφ− .3C(θ), cos θ),
A(θ) =

√
.64(1− .1C(θ)), B(θ) =

√
.64(1− .4C(θ)),

C(θ) = cos(π cos θ);
rounded rectangle q3 ◦ψ(θ,φ) =

(1,−1,−1) + r(θ,φ)(0.4 sinθ cosφ, 0.6 sin θ sinφ, 0.4 cos θ)

r(θ,φ) = (| sin θ cosφ|p + | sin θ sinφ|p + | cos θ|p)−
1
p , p = 8;

rounded tetrahedron q4 ◦ψ(θ,φ) = (−1,−2,−1) + 0.5r(θ,φ)ψ(θ,φ),
r(θ,φ) = (H(γ,γ,γ) + ( 1

p
)p−2H(−γ,−γ,−γ))−

1
p , H(γ,γ,γ) =

h(γ,γ,γ)p + h(−γ,−γ,γ)p + h(−γ,γ,−γ)p + h(γ,−γ,−γ)p,
h(a,b, c) = |min(0,a sin θ cosφ+ b sin θ sinφ+ c cos θ)|, γ = 1√

3
,

p = 6;
stellated dodecahedron q5 ◦ψ(θ,φ) = (0, 0, 0) + 0.2 r(θ,φ)ψ(θ,φ),

where r(θ,φ) > 0 solves
p−|r(θ,φ)f(δ,ξ,0)|p + p−|r(θ,φ)f(δ,−ξ,0)|p + p−|r(θ,φ)f(0,δ,ξ)|p +
p−|r(θ,φ)f(0,δ,−ξ)|p + p−|r(θ,φ)f(ξ,0,δ)|p + p−|r(θ,φ)f(−ξ,0,δ)|p = 2.5, with

f(a,b, c) = a sin θ cosφ+ b sin θ sinφ+ c cos θ, δ =
√

5−
√

5
10

,

ξ =
√

5+
√

5
10

, p = 3.4;
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Table 2: Convergence of the forward solver for the dielectric scattering
problem by the first four obstacles described in Table 1. The second column
displays the error of the far-field pattern for an interior point source and the
next two columns display point values of the far-field pattern for a plane
incident wave.

n ‖[E∞ps]n − E∞exact‖∞ <[E∞pw(d)]n · p =[E∞pw(d)]n · p cpu
10 2.02e−03 1.050 718 1.165 611 4min
20 2.74e−05 1.054 709 1.170 534 25min
30 5.44e−07 1.054 838 1.170 756 96min
40 8.38e−09 1.054 839 1.170 756 276min

Section 7, with a precision close to 10−3.

5 Operator formulations and IRGN method

To make the operator formulation (2) in the introduction precise, we first
introduce a set of admissible parametrisations V which forms an open sub-
set of a Hilbert space X. As in the introduction, let Fj : VN → L2

t (S2),
j = 1, . . . ,m denote the operator which maps a sequence of parametrisa-
tions q := (q`)16`6N ∈ VN of the union of boundaries (Γ`)16`6N to the
far-field pattern E∞j corresponding to the incident field Einc

j . These oper-
ators may be combined into one operator F : VN → L2

t (S2)m, F(q) :=
(F1(q), . . . , Fm(q)). We also combine the measured far-field patterns into
a vector E∞δ := (E∞1,δ, . . . ,E

∞
m,δ) ∈ L

2
t (S2)m such that the inverse problem is

written as
F(q) = E∞δ . (22)
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Table 3: Convergence of the forward solver for the scattering problem
by 27 dielectric spheres. Their diameters are given between brackets. The
separation distance between the obstacles is about 0.5l.

27× sphere(1l) , κ` = 2κ0 = 2π, µ0 = µ` = 1
n ‖[E∞pw]n − E∞exact‖∞ cpu time
5 8.96e−03 21min
10 2.12e−07 94min
15 1.60e−11 310min

To compute an approximate solution to (22) we use the Iteratively Regu-
larized Gauss–Newton method for Hilbert spaces [27, 28]. To apply this
method we show in Section 6 that the operator F is Fréchet differentiable and
derive formulas to evaluate the Fréchet derivative F ′[q] and its adjoint F ′[q]∗.
Then the iterates of the Iteratively Regularized Gauss–Newton method are
computed by

qk+1
δ := argmin

q∈XN

[
‖F(qkδ) + F ′[qkδ](q− qkδ) − E

∞
δ ‖2
L2
t (S2)m

+ αk‖q− q0‖2
]
.

(23)
Here q0 = q0

δ is some initial guess (in our numerical experiments we always
chose the unit sphere), and the regularisation parameters are chosen of the
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Table 4: Convergence of the forward solver for the scattering problem by
four ogives. Their diameters are given between brackets. The separation
distance between the obstacles is about 0.5l.

4×ogive(2l) , κ` = 4κ0 = 2π, µ0 = µ` = 1

n ‖[E∞ps]n − E∞exact‖∞ CPU time

25 2.90e−03 31min

35 1.55e−04 120min
45 8.38e−06 267min

form αk = α0

(
2
3

)k which provides logarithmic convergence rates of the
Iteratively Regularized Gauss–Newton method [28, Theorem 4.9] when the
stopping rule is given by the Morozov’s discrepancy principle (30). Since
the objective functional in (23) is quadratic and strictly convex, the first
order optimality conditions are necessary and sufficient, and the updates
(∂q)k := qk+1

δ − qkδ are the unique solutions to the linear equations

αkI+ F
′[qkδ]

∗
F ′[qkδ](∂q)

k
δ = F ′[qkδ]

∗(
E∞δ − F(qkδ)

)
+ αk

(
q0
δ − q

k
δ

)
. (24)

It remains to describe the choice of the set of admissible parametrisations V
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and the underlying Hilbert space X. A rather general way to parametrise a
boundary Γ` is to choose some reference domain Ωref with boundary Γref and
consider mappings q` : Γref → Γ` belonging to

Q :=
{
q` ∈ Hs(Γref ,R3) : q` injective, det(Dq`(x̂)) 6= 0 for all x̂ ∈ Γref

}
.

(25)
This is convenient for describing Fréchet derivatives of F in Section 6. For
s > 2 the set Q is open in X := Hs(Γref ,R3) and X ⊂ C 1(Γref ,R3). If Γ` and Γref

are sufficiently smooth, then Γ` has a parametrisation in Q if and only if Γ`
and Γref have the same genus.

A disadvantage of the choice (25) is that a given interface Γ` has many
parametrisations in Q. In the important special case that Γ` is star-shaped,
we choose Γref = S2 and consider special parametrisations of the form

q` = c` + Rr` with (Rr)(x̂) := r(x̂)x̂, x̂ ∈ S2

with an unknown function r` : S2 → (0,∞) and a known location c` ∈ R3.
Then the function r` is uniquely determined by Γ`. In this case we choose
the underlying Hilbert space Xstar := Hs(S2,R) with s > 2 and the set of
admissible parametrisations by

Qstar := {r ∈ Xstar : r > 0} .

As R(Qstar) ⊂ Q, we define Fstar : Q
N
star → L2

t (S2)m by

Fstar := F ◦ (Rq`)16`6N .

Then Fstar is injective if the union of star-shaped interface (Γ`)16`6N is uniquely
determined by the far-field data E∞1 , . . . ,E∞m.

6 The Fréchet derivative and its adjoint

In this section we assume that the set Q of admissible parametrisations chosen
by (25) with some reference boundary Γref . For q := (q`)16`6N ∈ QN we define
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Γq` = q`(Γref), then Γq := ∪N`=1Γq` , and we denote by nq` the exterior unit
normal vector to Γq` . More generally we label all quantities and operators
related to the dielectric scattering problem for the boundary Γq` by the
index q`. We restrict our discussion to the case m = 1 since the general case
is reduced to this special case by the formulas F ′[q]ξ = (F ′1[q]ξ, . . . , F

′
m[q]ξ)

and F ′[q]∗h =
∑m
j=1 F

′
j[q]

∗h.

The following theorem was established by Costabel and Le Louër [10] for the
scattering problem by a single dielectric obstacle. An alternative proof was
proposed by Hettlich [26].

Theorem 4 (characterisation of F ′[q]). The mapping F : QN → L2
t (S

2) with
s > 2 is Fréchet differentiable at all q ∈ QN for which Γq is of class C 2, and
the first derivative at q in the direction ξ := (ξ`)16`6N ∈ XN is

F ′[q]ξ = E∞q,ξ,

where E∞q,ξ is the far-field pattern of the solution
(
(E`q,ξ)16`6N,E

s
q,ξ

)
to the

Maxwell equations (1a) in R3\Γq that satisfies the Silver–Müller radiation
condition and the transmissions condition on Γq`

nq` × E
s
q,ξ − nq` × E

`
q,ξ = f ′q`,ξ` ,

1

µ0

nq` × curlEs
q,ξ −

1

µ`
nq` × curlE`q,ξ = g ′q`,ξ` ,
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with

f ′q`,ξ` = −
(
ξ` ◦ q−1

` · nq`
){
nq` × curl(Es

q + Einc)|Γq` × nq`

− nq` × curlE`q|Γq`
× nq`

}
+ curlΓq`

(
(ξ` ◦ q−1

` · nq`)
(
nq` · (E

s
q + Einc)|Γq` − nq` · E

`
q|Γq`

))
,

g ′q`,ξ` = −
(
ξ` ◦ q−1

` · nq`
){κ2

0

µ0

nq` × (Es
q + Einc)|Γq` × nq`

−
κ2
`

µ`

(
nq`×E

`
q|Γq`

× nq`
}

+ curlΓq`

(
(ξ` ◦ q−1

` · nq`)
{

1

µ0

nq` · curl(E
s
q + Einc)|Γq`

−
1

µ`
nq` · curlE

`
q|Γq`

})
where

(
(E`q)16`<n),E

s
q

)
is the solution to the dielectric scattering problem (1a)–

(1e) with the boundary Γq and we use Definition 2.

Remark 5 (alternative form of boundary values). By straightforward calcula-
tions and the use of the transmission conditions, one expresses the boundary
values of the Fréchet derivative in terms of the solution to the system of
integral equations (13) of the direct approach, that is[

u
(1)
q,`

u
(2)
q,`

]
= us

q,` + u
inc
` =

[
nq` × (Es

q + Einc)|Γq`
1
µ0
nq` × curl(Es

q + Einc)|Γq`

]
. (26)

First (Es
q+E

inc) = 1
κ20
curl curl(Es

q+E
inc) and E`q|Ωq`

= 1
κ2`
curl curlE`q|Ωq`

.

Moreover, using the identity (see (35), (36))

nq · curlE = curlΓq(nq × E× nq) = − divΓq(nq × E) on Γq , (27)

which holds for any smooth vector function E defined on a neighborhood
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of Γq, we obtain

f ′q`,ξ` = −
(
ξ` ◦ q−1

` · nq`
)
(µ0 − µ`)u

(2)
q,` × nq`

−
(
µ0

κ20
− µ`
κ2`

)
curlΓq`

(
ξnq` divΓq` u

(2)
q,`

)
g ′q`,ξ` = −

(
ξ` ◦ q−1

` · nq`
) (κ20

µ0
−
κ2`
µ`

)
u

(1)
q,` × nq`

−
(

1
µ0

− 1
µ`

)
curlΓq`

(
ξnq` divΓq` u

(1)
q,`

)
. (28)

An interesting feature of these formulas is that they depend on the relative
dielectric constants. For any obstacle Ω` whose parameters µ` and κ` are
very close to µ0 and κ0, then the Fréchet derivative of the far-field varies
little under any deformation of Γ` (at least for the first iterations of the
algorithm). We guess that in this case the shape reconstruction of this
obstacle is rather slow with Iteratively Regularized Gauss–Newton method
(illustrated in Figure 1(d)).

To define the adjoint of F ′[q] : (X = Hs(Γref ;R3))N → L2
t (S2), we interpret

the naturally complex Hilbert space L2
t (S2) as a real Hilbert space with the

real-valued inner product <〈·, ·〉L2
t (S2). For bounded linear operator between

complex Hilbert spaces such a reinterpretation of the spaces as real Hilbert
spaces does not change the adjoint.

Proposition 6 (characterisation of the adjoint F ′[q]∗). Let

Einc
h (y) :=

µ0

4π

∫
S2
e−iκ0x̂·yh(x̂)ds(x̂), y ∈ R3, (29)

denote the vector Herglotz function with kernel h ∈ L2
t (S2) and Eq,h̄ the total

wave solution to the scattering problem for the dielectric interface Γq and the
incident wave Einc

h̄ . Moreover, let jX↪→L2 denote the embedding operator from
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X = Hs(Γref ,R3) to L2(Γref ,R3). Then

F ′[q]
∗
h =

(
ξ∗`,h

)
16`6N

where for ` = 1, . . . ,N

ξ∗`,h = j∗
X↪→L2

[
Jq`

(
nq`<

{
− (µ0 − µ`)

( 1

µ0

nq × curlEq,h̄

)∣∣Γq` · u(2)
q,`

+

(
µ0

κ2
0

−
µ`

κ2
`

)
divΓq`

( 1

µ0

nq × curlEq,h̄

)∣∣Γq` · divΓq` u(2)
q,`

−

(
κ2

0

µ0

−
κ2
`

µ`

)(
nq × Eq,h̄

)∣∣Γq` · u(1)
q,`

+
(

1
µ0

− 1
µ`

)
divΓq`

(
nq × Eq,h̄

)∣∣Γq` · divΓq` u(1)
q,`

})
◦ q`

]
.

Proof: The proof consists of three steps:

1. Factorisation of F ′[q] and F ′[q]∗: Due to Theorem 4 and Remark 5
F ′[q] has a factorisation

F ′[q]ξ = Aq(Bq1ξ1, . . . ,B
qNξN) where Bq`ξ` :=

[
B
q`
1 ξ`
B
q`
2 ξ`

]
:=

[
g ′q`,ξ`
f ′q`,ξ`

]
with f ′q`,ξ` and g

′
q`,ξ`

defined in (28) and Aq maps the boundary values[
gq`
fq`

]
16`6N

onto the far-field pattern of the transmission problem (1a)–

(14)–(1e) across the boundary Γq, that is, Aq := 2Gq(KqIM)−1. Let us
denote by (Aq)∗

L2 and (Bq`)∗
L2 the adjoints of Aq and Bq` with respect

to the L2 inner products. (Bq` is unbounded and not everywhere defined
from L2(Γref ,R3) to L2

t (Γq`)
2, but well-defined on H1(Γref ,R3). Moreover,

Bq(Hs(Γref ,R3)) ⊂ H−1/2
div (Γq`)

2 ∩ L2
t (Γq`)

2 for s > 2.) Therefore, the
adjoint of F ′[q] has the factorisation

F ′[q]∗h =
(
ξ∗`,h

)
16`6N

with ξ∗`,h = j∗
X↪→L2(Bq`)∗L2

(
(Aq)∗

L2h
)∣∣Γq` ,

and it remains to characterize (Aq)∗
L2 and (Bq`)∗

L2 .
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2. Characterisation of (Aq)∗
L2 : Let us introduce the operatorGq2 : L2

t (Γq)→
L2

t (S2) by (Gq2ψ) (x̂) :=
∑N
`=1

µ0

4π
x̂×
∫
Γq`
e−iκ0x̂·yψ`(y)ds(y)× x̂ . Then

(Gq2 )
∗h =

(
(Gq1

2 )
∗
h, . . . , (GqN2 )

∗
h
)

where(
(Gq`2 )∗h

)
(y) =

µ0

4π
nq`(y)×

(∫
S2
eiκ0x̂·yh(x̂)ds(x̂)

)
|Γq`

× nq`(y)

= nq(y)×
(
Einc
h̄

)
|Γq`

(y)× nq(y).

As
(
Gq`

[ϕ`
ψ`

] )
(x̂) = iκ0

µ0
x̂× (Gq`2 ϕ`)(x̂) + (Gq`2 ψ`)(x̂) we obtain

(Gq`)
∗
L2 h =

nq` ×
(

1
µ0
curlEinc

h

)
|Γq`

× nq`

nq` ×
(
Einc
h

)
|Γq`

× nq`

 .

Therefore, using Remark 1 to pass from KIM to KDM, it follows that

(Aq)∗
L2h = 2((KqIM)−1)∗(Gq)∗

L2h = 2(>(KqIM))−1(Gq)∗
L2h

= Rq(KqDM)−1

[
2Einc
h |Γq`

× nq`
2
µ0
curlEinc

h |Γq`
× nq`

]
16`6N

=

 nq` × Eq,h̄|Γq`
× nq`

1
µ0
nq` × curlEq,h̄|Γq`

× nq`


16`6N

where we use (13) in the last line.

3. Characterisation of (Bq`)∗
L2 : Compute (Bq`)∗

L2

[
g1×nq`
g2×nq`

]
= (Bq`1 )∗

L2(g1×
nq`) + (Bq`2 )∗

L2(g2 × nq`). For B
q`
1 using the integration by part for-
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mula (39) we obtain

<
〈
g1 × nq` ,B

q`
1 ξ`

〉
L2
t (Γq`)

=

∫
Γq`

(ξ` ◦ q−1
` · nq`)<

{
−
(
κ20
µ0

−
κ2`
µ`

)(
g1 × nq`

)
·
(
u

(1)
q` × nq`

)
−
(

1
µ0

− 1
µ`

)
curlΓq` (g1 × nq`) · divΓq` u

(1)
q`

}
ds .

Together with the transformation formula
∫
Γq`
f ds =

∫
Γref

(f ◦ q`)Jq` ds
and the identities (a×n) · (b×n) = (n× a×n) ·b and (27) this yields

(Bq`1 )∗
L2(g1 × nq`)

= Jq` ·
(
nq`<

{
−
(
κ20
µ0

−
κ2`
µ`

)(
nq` × g1 × nq`

)
· u(1)
q`

+
(

1
µ0

− 1
µ`

)
divΓq` g1 · divΓq` u

(1)
q`

})
◦ q` .

Together with the analogous formula for (Bq`2 )∗
L2(g2 × nq`) and parts 1

and 2 we obtain the assertion.

♠

Remark 7. In practice, the measurements are computed on a subset Γobs

of S2. Thus, we replace (29) by Einc
h (y) := µ0

4π

∫
Γobs
e−iκ0x̂·yh(x̂)ds(x̂), that we

compute using the gauss quadrature formula [12, Eq. (2.42)] restricted to the
gauss points located in Γobs.
Remark 8. Recall from the transformation formulas (19) that (divΓq` v)◦q` =

1
Jq`

divS2(Pq`v) and Pq` curlΓq` v = curlS2(v ◦ q`). As both divS2 and curlS2
are diagonal with respect to the chosen bases of spherical harmonics and
vector spherical harmonics, the implementation of the formulas in Remark 5
and Proposition 6 is straightforward using our discretisation.

Using [22, Corollay 4] we obtain that F ′star[r]
∗h = (jXstar↪→L2r

2
`<{· · · } ◦ q`)16`6N

where the expression in the curly brackets coincides with that in Proposition 6.
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7 Implementation of the Newton method and
numerical examples

For any n ∈ N∗, let HR
n be the (n + 1)2 dimensional space spanned by

the orthonormal scalar real spherical harmonics of degree at most n. In
the sequel, we consider that the unknown radial parametrisations qkδ =(
qk`,δ = c` + Rrk`,δ

)
16`6N are approached by scalar spherical harmonics

of degree at most nstar, respectively, that means rk`,δ ∈ HR
nstar

. The far-
field data are evaluated at some quadrature points x̂sobs = (x̂s1, x̂

s
2, x̂

s
3) =

(cosφr sin θs, sinφr sin θs, cos θs) with θs = cos−1 zs, where zs, for s =
1, . . . ,nmeas + 1, are the zeros of the Legendre polynomial of degree nmeas + 1,
and φr = rπ

nmeas+1
, for r = 0, . . . , 2nmeas + 1. Let us summarize the numer-

ical implementation of the kth regularised Newton step for the operator
equation (22):

1. In the parametrisation of the current reconstruction Γkδ :=
⋃N
`=1 q

k
`,δ(Γref),

evaluate the forward operator F by solving the discretized approximation
of the integral equation (13) of the direct method KDM

(
u
(j)
`

)
16`6N =

2
(
uinc,j
`

)
16`6N for all incident waves j = 1, . . . ,m using an lu decom-

position of the matrix KDM. Save the Fourier coefficients of u(j) of the
total exterior fields (n× (Es,j + Einc,j),n× curl(Es,j + Einc,j))> on Γkδ .
Finally compute the discrete far-field patterns E∞,j =

∑N
`=1 G

`u
(j)
` for

the jth incident wave and the interface Γkδ .

2. Now F ′[qkδ]ξ is evaluated for any ξ by solving discretised versions of the
integral equation (16) KIM(ψ

(j)
` ,ϕ

(j)
` )>16`6N = 2(g

(j) ′

qN`,δ,ξ`
, f

(j) ′

qN`,δ,ξ`
)16`6N

for j = 1, . . . ,m. The right hand sides are evaluated using the so-
lutions u(j) from point 1 (see Remark 8). For the inversion of the
matrix KIM the lu-decomposition of KDM is reused (see Remark 1).
Finally, F ′[qkδ]ξ is approximated by the concatenation of the vectors∑N
`=1 G

`(ψ
(j)
` ,ϕ

(j)
` ) for j = 1, . . . ,m.
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Similarly, to compute F ′[qkδ]∗h with h = (h(1), . . . ,h(m)), we compute
traces of the total fields E

qkδ ,h(j) for Herglotz incident fields with ker-

nels h(j) by evaluating 2K>IM(G`
>
h(j))16`6N. Then we use the formula

in Proposition 6 and sum up the results for each j to obtain F ′[qkδ]∗h.

3. Compute the next iterate qk+1
δ by minimizing the quadratic Tikhonov

functional (23) (or solving the equivalent linear equation (24)) by the
conjugate gradient method. In each conjugate gradient step F ′[qkδ]
and F ′[qkδ]∗ are applied to some vectors as described in point 2.

In the conjugate gradient algorithm we only compute L2 adjoint F ′[qkδ]∗L2 and
evaluate norms in X = Hs(S2) using Proposition 9 and norms in Y = L2

t (Γobs)
m

using a quadrature formula. For more practical uses of the inverse algorithm
combined with boundary element methods, the computation of integrals
over Γobs for evaluating either the Herglotz incident fields or norms in Y can be
replaced by a discrete sum over an equidistributed sequence of points in Γobs.

Our numerical experiments are concerned with the shape reconstruction of
the obstacles described in Table 1, see Figure 1(a) or Figure 2(a). We solve,
using first order linearisation of the far-field operator, the inverse problem
equation (22) at a finite set of observation directions dispersed either on
the far-field sphere Γobs = S2 (that is using full-scattering noisy data) or on
the far-field half-sphere Γobs = S2 ∩ {x̂2 > 0} (that is using back-scattering
noisy data) or on the far-field half-sphere Γobs = S2 ∩ {x̂2 6 0} (that is using
forward-scattering noisy data). In all experiments, we use nmeas = 7 and
compute the far-field data at the gauss quadrature points x̂sobs ∈ Γobs for
evaluating the Herglotz incident fields (29).

As a first test, we iteratively recover the shape of four dielectric scatterers
illuminated by five incident plane waves coming from the half-space x̂2 > 0
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that are defined by the following directions and polarisations:

d1 = (0,−1, 0), d2 = (0,−
√

2
2
,
√

2
2
), d3 = (0,−

√
2

2
,−
√

2
2
),

d4 = (
√

2
2
,−
√

2
2
, 0), d5 = (−

√
2

2
,−
√

2
2
, 0)

p1 = p2 = p3 = (1, 0, 0), p4 = p5 = (0, 0, 1).

We consider back-scattering measurements with random noise level of 1%
in Figure 1(b), forward-scattering measurements with random noise level
of 1% (c) and back-scattering measurements with random noise level of 5%
in Figure 1 (d). The exterior parameters are µ0 = 1 and κ0 = π so that the
diameters of the scatterers are roughly 0.5l or 0.6l. The separation distance
between the obstacles varies between 0.5l or 1.5l. To compute the exact
far-field data we use n = 15 for the four obstacles. To compute the far-field
data at each iteration step we use n = 10. The radial functions describing the
unknown parametrisation belong to HR

15. The initial guesses are four spheres
with diameters 0.6l located at the already known centers given in Table 1.
Using the discrepancy principle, the algorithm is stopped at the first index k
for which

‖F(qkδ) − E
∞
δ ‖ 6 τδ (30)

where we choose τ = 1.5 . We set α0 = 0.1. The numerical experiments were
realised on a laptop with a 2.7GHz processor with four workers and 8GB
ram. The cpu time for one iteration is about 25min. With this stopping
rule we obtain the picture presented in Figure 1(b) after 17 iterations , the
picture presented in Figure 1(c) after 13 iterations, and the picture presented
in Figure 1(d) after 10 iterations. As a result, we find that we obtain similar
partial reconstruction using either forward- or back-scattering measurements.
By increasing the degree of spherical harmonics describing the shapes (i.e.,
with n > 30), one can even recover the sharp angle of the rectangle and the
tetrahedron. Also as expected, the low contrast between exterior and interior
parameters renders the shape reconstruction of the peanut rather difficult.

As a second test, we analyze the influence of the number of incident plane
waves. We iteratively recover the shape of two identical obstacles illuminated
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Figure 1: Iterative shape reconstruction of four dielectric obstacles illumi-
nated by 5 incoming plane waves from the half-space x̂2 > 0: (b-c) κ` = 2κ0,
µ` = µ0 for 1 6 ` 6 4, and (d) κ1 = 1.2κ0, κ2 = 2κ0, κ3 = 1.5κ0, κ4 = 0.7κ0,
µ1 = µ0, µ2 = 1.1µ0, µ3 = 0.9µ0, µ4 = 1.5µ0. Click on an image to download
a movie of the iterations.

(a) Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (b) back-scattering data with
1% random noise

(c) forward-scattering data
with 1% random noise

(d) back-scattering data with
5% random noise

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/11534/2246
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/11534/2247
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/11534/2248
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Figure 2: Iterative shape reconstruction of two identical dielectric obstacles
illuminated by either one or several incident plane waves coming from the
half-space x̂2 > 0 and with 5% noise. Click on an image to download a movie
of the iterations.
(a) Γ =

{
(0, 1.5, 0) + Γ5

}
∪
{
(0,−2, 0) + Γ5

}
(b) five incoming plane waves

(c) one incoming plane wave

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/11534/2249
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/11534/2250
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either by one incident plane wave defined by the couple (d1,p1) in Figure 2(b)
or by the five incident plane waves above defined in Figure 2(c). The geometry
of the obstacles requires a higher frequency and in our experiments we set
κ0 = 2π so that the diameters of the scatterers are roughly 2l. The interior
parameters are κ` = 2κ0 and µ` = µ0. The separation distance between the
obstacles is about 1.5l. To compute the exact far-field data we use n = 25
for the four obstacles. To compute the far-field data at each iteration step we
use n = 20. The radial functions describing the unknown parametrisation
belong to HR

20. We use either back-scattering measurements in Figure 2(b) or
full-scattering measurements in Figure 2(c) with a random noise level of 5%.
With the stopping rule (30) and τ = 1.5, we obtain the picture presented
in Figure 2(b) after 26 iterations and the picture presented in Figure 2(c)
after 17 iterations. As a result we find that collecting the far-field data
in all directions for a single incident wave is not sufficient to recover the
20 peaks of the stellated dodecahedron. Using partial far-field measurements
and increasing the number of incident plane waves, we obtain very accurate
reconstruction of the dielectric obstacles, even for the one located in the
shadow part.

8 Conclusion

This paper demonstrates that Gauss–Newton iterative method applied to
the first order linearisation of the objective functional F is a powerful tool
for solving 3D inverse multiple scattering problems, provided that a fast
solver is used to evaluate F. Increasing the number of obstacles, we suggest
using the indirect solver [18]. Incomplete knowledge of the scattered data
corresponding to very few incident waves suffices to recover an accurate
approximation of the shape of the multiple obstacles by opposition to sampling
methods [5]. The main drawback is that we need to know from the beginning
the exact number of obstacles, their size and location. The latter issue can
be handled by combining the iterative algorithm to qualitative methods such
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as topological gradient based method [6] or T-matrix based method [48].
The domain-derivative based formulation in the Gauss–Newton iterations
can also be replaced by the material-derivative based formulation [31] that
avoids the solution of the forward problem in the nonlinear least square. The
analysis and comparison of the resulting hybrid methods for more complicated
configurations (multiple-layered media) is the subject of future work.

A Surface differential operators

First we briefly recall the definitions and some properties of surface differential
operators [43]. Assuming that Γ admits an atlas (Γi,Oi,ψi)16i6p, where
(Γi)16i6p is a covering of open subset of Γ and for i = 1, . . . ,p, the function ψi
is a diffeomorphism (of class C 1 at least) such that ψ−1

i (Γi) = Oi ⊂ R2, then
when x ∈ Γi we write x = ψi(ξ

x
1 , ξ

x
2 ) where (ξx1 , ξ

x
2 ) ∈ Oi. The tangent plane

to Γ at x is generated by the vectors

e1(x) =
∂ψi

∂ξ1

(ξx1, ξ
x
2) and e2(x) =

∂ψi

∂ξ2

(ξx1, ξ
x
2).

The unit outer normal vector to Γ and the surface area element are

n =
e1 × e2

|e1 × e2|
and ds(y) = |e1(y)× e2(y)|dξ1 dξ2 = Jψi(y)dξ1 dξ2,

where Jψi denotes the determinant of the Jacobian matrix of ψi : Oi 7→ Γi.
The cotangent plane to Γ at x is generated by the vectors

e1(x) =
e2(x)× n(x)
Jψi(x)

and e2(x) =
n(x)× e1(x)

Jψi(x)
.

For i = 1, 2, ei · ej = δji where δ
j
i represents the Kronecker symbol.
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The tangential gradient and the tangential vector curl of any scalar function
u ∈ C 1(Γ ,C) are defined for x = ψi(ξ

x
1, ξ

x
2) ∈ Γ by

gradΓ u(x) =
∂(u ◦ψi)
∂ξ1

◦ψ−1
i (x)e1(x) +

∂(u ◦ψi)
∂ξ2

◦ψ−1
i (x)e2(x), (31)

curlΓ u(x) =
1

Jψi(x)

[
∂(u ◦ψi)
∂ξ2

◦ψ−1
i (x)e1(x) −

∂(u ◦ψi)
∂ξ1

◦ψ−1
i (x)e2(x)

]
.

(32)

such that gradΓ u = (grad ũ)|Γ and curlΓ u = curl(ũñ)|Γ for any smooth
extension ũ of u to a neighborhood of Γ and a smooth extension ñ of n as
gradient of a distance function. Moreover, define the surface divergence of any
vector function v = v1e1 + v

2e2 ∈ C 1(Γ ,C3) in the tangent plane to Γ and
the surface scalar curl of any vector function w = w1e

1 +w2e
2 ∈ C 1(Γ ,C3)

in the cotangent plane to Γ or x = ψi(ξ
x
1, ξ

x
2) ∈ Γ by

divΓ v(x) =
1

Jψi(x)

(
∂(Jψiv

1) ◦ψi
∂ξ1

+
∂(Jψiv

2) ◦ψi
∂ξ2

)
◦ψ−1

i (x), (33)

curlΓ w(x) =
1

Jψi(x)

(
∂(w2 ◦ψi)

∂ξ1

−
∂(w1 ◦ψi)

∂ξ2

)
◦ψ−1

i (x). (34)

These definitions are independent of the choice of the coordinate system, and
the identities

n · (curlE)|Γ = curlΓ (n× E× n), (35)
curlΓ u = (gradΓ u)× n, curlΓ (w) = divΓ (w× n), (36)
curlΓ gradΓ u = 0, divΓ curlΓ u = 0, (37)

hold for u andw and any smooth vector function E defined on a neighborhood
of Γ . By density arguments, the surface differential operators can be extended
to Sobolev spaces. For s ∈ R, ϕ ∈ Hs+1

t (Γ) and ϕ ∈ H−s(Γ) we have the



B Spherical harmonics and Sobolev spaces on S2 E42

dualities ∫
Γ

(divΓ ϕ) ·ϕds = −

∫
Γ

ϕ · gradΓ ϕds , (38)∫
Γ

(curlΓ ϕ) ·ϕds =
∫
Γ

ϕ · curlΓ ϕds . (39)

B Spherical harmonics and Sobolev spaces
on S2

In this appendix we recall the characterisations of Sobolev spaces on S2 by
scalar and vector spherical harmonics [43]. For l ∈ N and 0 6 j 6 l, let Pjl
denote the jth associated Legendre function of order l (provided by Matlab).
Using the notation (18), the spherical harmonics are defined by

Yl,j(x̂) = (−1)(|j|−j)/2

√
2l+ 1

4π

(l− |j|!)

(l+ |j|!)
P
|j|
l (cos θ)e

ijφ

for j = −l, . . . , l and l = 0, 1, 2, . . ..

Proposition 9. {Yl,j : l, j ∈ Z, l > 0, |j| 6 l} is a complete orthonormal
system in L2(S2). The complex Hilbert spaces Hs(S2) for s ∈ R can be
characterized by

Hs(S2) =

{
q =

∞∑
l=0

l∑
j=−l

cl,jYl,j : cl,j ∈ C and
∞∑
l=1

l∑
j=−l

(1+ l2)s|cl,j|
2 < +∞} ,

with (equivalent) norm ‖q‖2
Hs =

∑∞
l=1

∑l
j=−l(1+l

2)s|cl,j|
2 =
∑∞
l=1

∑l
j=−l(1+

l2)s
∣∣∫

S2 q · Yl,jds
∣∣2 . A function q ∈ Hs(S2,C) is real valued if and only if

cl,−j = (−1)jcl,j for all l = 0, 1, . . . and j = −l, . . . , l.
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The tangential gradient of the spherical harmonics is

gradS2 Yl,j(x̂)

=



(−1)(|j|−j)/2
√

2l+1
4π

(l−|j|!)
(l+|j|!)

(
∂P

|j|
l (cosθ)

∂θ
eijφeθ + ij

P
|j|
l (cosθ)

sinθ
eijφeφ

)
,

sin θ 6= 0,

−(−1)(|j|−j)/2
√
l(l+ 1)2l+1

4π

(
(cosθ)l

2
eθ + ij

(cosθ)l+1

2
eφ

)
,

sin θ = 0, |j| = 1;

(0, 0, 0), sin θ = 0, |j| 6= 1 ;

for l ∈ N∗ and j ∈ N with |j| 6 l with

∂P
|j|
l (cos θ)

∂θ
=


−(l+ |j|)(l− |j|+ 1)P

|j|−1
l (cos θ) − |j| cosθ

sinθ
P
|j|
l (cos θ),

|j| 6= 0;

P1
l(cos θ), otherwise.

The tangential vector spherical harmonics are defined by

Y
(1)
l,j =

1√
l(l+ 1)

gradS2 Yl,j and Y
(2)
l,j =

1√
l(l+ 1)

curlS2 Yl,j

for j = −l, . . . , l and l = 1, 2, . . . and form a complete orthonormal system
in L2

t (S2).
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