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Numerical specified homogenization of a
discrete model with a local perturbation and

application to traffic flow
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Abstract

We present techniques for the analysis and numerical analysis of
non-local non-linear pdes. We apply these techniques to an equation
derived from the modelling of traffic flow. We introduce a macroscopic
model in the form of a Hamilton–Jacobi equation with a junction
condition. More precisely, the goal of this work is to obtain the
numerical homogenization of a non-local pde deriving from a first order
discrete model for traffic flow that simulates the presence of a local
perturbation. Previously we showed that the solution of the discrete
microscopic model converges to the (unique) solution of a Hamilton–
Jacobi equation posed on a network and with a junction condition
(it can be seen as a flux limiter that keeps the memory of the local
perturbation). The goal of this article is to provide a numerical scheme
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able to obtain an approximation of this flux-limiter. We prove the
convergence of this scheme and we give some numerical results.

Subject class: 35D40, 90B20, 35B27, 35F20, 45K05, 65M06

Keywords: numerical specified homogenization, Hamilton–Jacobi equa-
tions, viscosity solutions, traffic flow, microscopic models, macroscopic
models, convergence of numerical scheme

Contents
1 Introduction E52

1.1 General model: first order model with a local perturbation E54
1.2 Injecting the system of odes into a single pde . . . . . . . E55
1.3 Convergence result . . . . . . . . . . . . . . . . . . . . . . E56

2 Construction of the flux-limiter E59

3 Numerical scheme for (9) E60
3.1 Discretization of (9) . . . . . . . . . . . . . . . . . . . . . E60
3.2 Viscosity solution for the numerical scheme for the approxi-

mated cell problem . . . . . . . . . . . . . . . . . . . . . . E63

4 Viscosity solutions for the approximated cell problem E64
4.1 Viscosity solution for the continuous approximated cell problem E64

5 Convergence of the numerical scheme for the approximated
cell problem E69

6 Numerical simulations E73
6.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . E73
6.2 Setting of the computation . . . . . . . . . . . . . . . . . . E74
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1 Introduction

The problem of simulating traffic flow is very important, particularly because it
allows us to know how the traffic would react to a change in the infrastructure
of the road. Traffic flow can be simulated at different scales: the microscopic
scale (which describes the dynamics of all the vehicles); the macroscopic
scale (which describes macroscopic quantities such as the vehicle density,
the average speed, . . . ); and the mesoscopic scale (between the microscopic
and the macroscopic scale). We only consider the microscopic and the
macroscopic scales.

Classic microscopic models describe how each vehicle behaves (in a single road).
Moreover, they are very precise, intuitive, and based on solid assumptions.
However, if we wish to simulate the traffic at large scales (like an entire city),
then we cannot use microscopic models because it would be too expensive
from a computational point of view. On the other hand, classic macroscopic
models simulate traffic using quantities such as the density of vehicles, and
the average velocity. These models are more adapted to simulate traffic at
larger scales. However, they often are very hard to manipulate and based
on assumptions difficult to verify. This is why it is interesting to rigorously
obtain the macroscopic equivalent of microscopic models.

We introduce a new macroscopic model for traffic flow. The difference of this
model with the classical Bando model [2] or the ones by Batista and Twrdy [5]
is that it takes into account the effect of a local perturbation. To obtain
such a model we use in Section 2 the result from Forcadel et al. [13] which
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is an homogenization result of a non-local non-linear pde and we combine
it with the numerical analysis of a non-local non-linear pde. The numerical
scheme we use in Section 3 was inspired by the ones presented by Cacace et
al. [6], Costeseque et al. [7], and Forcadel [11] and can be adapted for other
non-local non-linear pdes. Similarly, the algorithm we provide in this article
can be adapted (provided the numerical scheme satisfies certain monotonicity
conditions) for other non-local non-linear pdes.

Previously [13] we obtained an incomplete macroscopic model (in the form of
a Hamilton–Jacobi equation) equivalent to a microscopic model that simulates
the presence of local perturbation that does not depend on time (for instance
a school zone, or a moderator). In order to obtain the complete model we
need to approximate a constant, called the flux-limiter, that contains the
information from the local perturbation but at the macroscopic scale. To
be more specific, we are interested in the numerical homogenization of a
non-local pde that derives from a microscopic first order model for traffic
flow of the type “follow-the-leader” (see (1)) that simulates the presence of a
local perturbation. In Section 6, we present an algorithm that allows us to
compute an approximation of the flux-limiter.

Forcadel et al. [13, Theorem 2.8] obtained the homogenization of the pde and
the homogenized system is defined by a function call the effective Hamiltonian
and by a constant call the flux limiter. The effective Hamiltonian describes
the dynamics of the traffic flow and the flux-limiter defines how the local
perturbation affects the macroscopic (homogenized) model. The effective
Hamiltonian has been explicitly determined [13, Theorem 2.8]; however, the
flux-limiter constant is only implicitly determined. Section 3 provides a
numerical scheme for the computation of an approximation of the flux-limiter.
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1.1 General model: first order model with a local
perturbation

We detail the microscopic model from which derives the pde we study through-
out this article. We consider the following model where all the vehicles are
considered as points placed in the real line, for all t > 0 ,

U̇j(t) = V (Uj+1(t) −Uj(t)) · φ (Uj(t)) with j ∈ Z , (1)

where Uj : [0,+∞) → R denotes the position of the jth vehicle and U̇j is
its velocity. The function φ : R → [0, 1] simulates the presence of a local
perturbation around the origin. We denote by r the radius of influence of
the perturbation.

The function V is called the optimal velocity function and we make the
following assumptions on V and φ.

Assumption 1. 1. V : R→ R+ is Lipschitz continuous, non-negative.

2. V is non-decreasing on R.

3. There exists h0 ∈ (0,+∞) such that for all h 6 h0 , V(h) = 0 .

4. There exists hmax ∈ (h0,+∞) such that for all h > hmax , V(h) =
V(hmax) =: Vmax .

5. There exists a real p0 ∈ [−1/h0, 0) such that the function p 7→
pV(−1/p) is decreasing on [−1/h0,p0) and increasing on [p0, 0).

6. The function φ : R → [0, 1] is Lipschitz continuous and φ(x) = 1 for
|x| > r.

Remark 2. Assumption 1.1 to Assumption 1.3 and Assumption 1.5 are satisfied
by several classical optimal velocity functions. We add Assumption 1.4
to work with V ′ with a bounded support. But by modifying slightly the
classical optimal velocity functions, we obtain a function that satisfies all the
assumptions. For instance, in the case of the Greenshields based models [16]
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Figure 1: Schematic representation of the optimal velocity function V .

h0 hmax h

Vmax

0

V

(see also the works of Batista et al. [5], Edie [10], Newell [20] and Garavello
et al. [15] for other classical optimal velocity functions):

V(h) =


0 for h 6 h0 ,

Vmax

[
1 − (h0/h)

2
]

for h0 < h 6 hmax ,

Vmax

[
1 − (h0/hmax)

2
]

for h > hmax .

Figure 1 schematically represents an optimal velocity function satisfying
Assumption 1.

1.2 Injecting the system of odes into a single pde

In order to obtain an homogenization result, I borrowed the idea from Forcadel
et al. [12] and injected the system of ode (1) into a single pde. To do this,
Forcadel et al. [13] introduced the following “cumulative distribution function”
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of vehicles

ρε(t,y) = −ε

{∑
i>0

H [y− εUi(t/ε)] +
∑
i<0

[−1 +H (y− εUi(t/ε))]

}
, (2)

with

H(x) =

{
1 if x > 0 ,

0 if x < 0 .

Forcadel et al. [13] proved that under Assumption 1 the function ρε satisfies in
the viscosity sense (it is a weak solution [13]) the following non-local equation
for uε:

uεt +M
ε

[
uε(t, ·)
ε

]
(x) · φ

(x
ε

)
· |uεx| = 0 on (0,+∞)× R ,

where Mε is a non-local operator defined by

Mε[G](x) =

∫+∞
−∞ J(z)E [G(x+ εz) −G(x)]dz−

3
2
Vmax (3)

with

E(z) =


0 if z > 0 ,

1/2 if − 1 6 z < 0 ,

3/2 if z < −1 ,

and J = V ′ on R. (4)

We denote by M the operator Mε with ε = 1 .

1.3 Convergence result

We define k0 = 1/h0 and H̄ : R→ R , by

H̄(p) =


−p− k0 for p < −k0 ,

−V (−1/p) |p| for − k0 6 p 6 0 ,

p for p > 0 .
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Figure 2: Schematic representation of H̄.

0

H0

p0−k0
p

H̄

Such an H̄ is continuous, coercive
(
lim|p|→+∞ H̄(p) = +∞) and because of

Assumption 1.5, there exists a unique point p0 ∈ [−k0, 0] such that{
H̄ is decreasing on (−∞,p0),
H̄ is increasing on (p0,+∞).

We denote by H0 = minp∈R H̄(p) = H̄(p0) and Figure 2 shows an schematic
representation of H̄.

Forcadel et al. [13] established the following homogenization result.

Theorem 3 (Junction condition by homogenisation). Given Assumption 1,
and that at the initial time for all i ∈ Z , Ui(0) 6 Ui+1(0) − h0 . We
also assume that there exists a constant R > 0 such that, for all i ∈ Z , if
|Ui(0)| > R , then Ui+1(0) − Ui(0) = h , with h > h0 . Then there exists
Ā ∈ [H0, 0] such that the function ρε defined by (2) converges towards the
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unique solution u0 of
u0
t + H̄(u

0
x) = 0 for (t, x) ∈ (0,+∞)× (−∞, 0),

u0
t + H̄(u

0
x) = 0 for (t, x) ∈ (0,+∞)× (0,+∞),

u0
t + FĀ (u0

x(t, 0−),u0
x(t, 0+)) = 0 for (t, x) ∈ (0,+∞)× {0},

u0(0, x) = −x/h for x ∈ R ,

(5)

where Ā has to be determined, and

FĀ(p−,p+) = max
{
Ā, H̄+(p−), H̄

−(p+)
}

, (6)

with

H̄−(p) =

{
H̄(p) if p 6 p0 ,

H̄(p0) if p > p0 ,
and H̄+(p) =

{
H̄(p0) if p 6 p0 ,

H̄(p) if p > p0 .
(7)

Moreover, u0 satisfies −k0 6 u0
x 6 0 .

Link with the macroscopic model lwr There are different types of
established macroscopic models. But we focus on the first order model lwr
(the Lighthill–Whitham–Richards model [18, 22, e.g.]), which is defined by
the following pde for ρ:

∂tρ+ ∂x[ρv(ρ)] = 0 , (8)

where ρ(t, x) is the density of vehicles at the point x ∈ R (physical point on the
road) at time t ∈ (0,+∞), and v(ρ) is the average speed of vehicles. We call
the function f(ρ) = ρv(ρ) the traffic flux, which is also called the fundamental
diagram. The fundamental diagram completely defines equation (8). Different
authors have presented fundamental diagrams trying to best adapt the lwr
model to real life observations. The book of Garavello and Piccoli [15] gave
more details on those models.

Let us formally consider ρ0 = ∂xu
0 where u0 is the unique solution of (5).

We can see that ρ0 formally satisfies the pde ∂tρ0 + ∂x[H̄(ρ
0)] = 0 for x 6= 0 .
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This pde is equivalent to an lwr model with the fundamental diagram
pV(1/p) =: H̄(p) and ρ0 = ∂xu

0 corresponds to the density of vehicles. The
interest in the formulation (5) is that we have a well defined equation at the
junction for all times t ∈ (0,+∞). Model (5) is an extension on the lwr
model since it provides a rigorous junction condition that simulates a local
perturbation. Only using the classical lwr model one is forced to use the
initial condition to simulate a local perturbation but the effect of the initial
condition does not remain over time. Model (5) provides a way to analyse at
the macroscopic scale the influence of local perturbations on traffic flow and
this is why it is important to have a complete result and to have (at least)
a numerical approximation of the flux-limiter Ā that defines the junction
conditions in (5).

2 Construction of the flux-limiter

Theorem 3 shows that in order to have a complete homogenization result we
only need to determine the flux limiter Ā. In the rest of the article we focus
on obtaining a numerical approximation of the flux limiter. Section 6 gives a
few characterizations of Ā described by Forcadel et al. [13].

The flux limiter is the unique constant λ such that there exists a solution w
of the Hamilton–Jacobi equation M[w](x) · φ(x) · |wx| = λ for x ∈ R , with
the right slopes at infinity. Forcadel et al. [14, 13] explained these slopes
in detail.

In order to construct the corrector for the junction w and Ā, Forcadel, Salazar
and Zaydan [13] used the idea from Galise, Imbert and Monneau [14], and
from Achdou and Tchou [1] and from the lectures of Lions at “College de
France” [19], which is to construct the correctors in a truncated domain with
good boundary conditions and then to expand the domain.

The effective flux limiter is then obtained in the limit as l → +∞ , and
then R→ +∞ of λl,R which is the unique constant for which the following
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truncated cell problem admits a solution [13, Prop. 6.4] for l ∈ (r,+∞), r� l

and r 6 R� l , find λl,R, such that there exists a solution wl,R of
GR
(
x, [wl,R],wl,Rx

)
= λl,R if x ∈ (−l, l),

H̄−(wl,Rx ) = λl,R if x = −l ,

H̄+(wl,Rx ) = λl,R if x = l ,

with GR(x, [U],q) = ψR(x)φ(x) ·M[U](x) · |q| + (1 − ψR(x)) · H̄(q), and
ψR ∈ C∞, ψR : R→ [0, 1], with ψR(x) < 1 for all x /∈ [−R,R] and

ψR ≡
{

1 on [−R,R],

0 outside [−R− 10,R+ 10].

Remark 4. The operator GR is used to have a local operator near the boundary
and then to well define the boundary conditions.

To obtain an approximation of λl,R we follow the construction of Forcadel et
al. [13] and consider the approximated truncated cell problem, for all δ > 0 :

δvδ +ψR(x)M[vδ](x) · φ(x) · |vδx|
+ (1 −ψR(x))H̄(v

δ
x) = 0 for x ∈ (−l, l),

δvδ + H̄−(vδx) = 0 for x = −l ,

δvδ + H̄+(vδx) = 0 for x = l .

(9)

Forcadel, Salazar and Zaydan [13] proved that −δvδ(0)→ λl,R as δ→ 0 .

3 Numerical scheme for (9)

3.1 Discretization of (9)

The numerical scheme we use was inspired by one from Cacace et al. [6], and
from Forcadel [11] for the non-local operator, and by Costeseque et al. [7]
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for the local operator. We consider a uniform grid of the interval [−l, l] with
2n+ 1 points, n ∈ N\{0}, and we denote by ∆x = l/n the discretization step.
For all i ∈ {−n, . . . ,n} , we denote by xi = ∆x · i the nodes of the grid. In
particular x0 = 0 , x−n = −l and xn = l .

For every discrete function v : {−n, . . . ,n}→ R , we denote by v] its piecewise
constant extension to R, defined by

v](x) =

n∑
i=1

vi · χQi(x) (10)

with

Qi =


[−l,−l+ ∆x/2) if i = −n ,

[xi − ∆x/2, xi + ∆x/2) if i ∈ {−n+ 1, . . . ,n− 1}

[l− ∆x/2, l] if i = n .

Discretization of the non-local operator For all discrete function v :
{−n, . . . ,n} → R , we define the discrete non-local operators Md

i [v] :=
M[v]](xi) and M̃d

i [v] := M̃[v]](xi), where M̃ is defined like M, (3) with
ε = 1 , but replacing E with

Ẽ(z) =


0 if z > 0 ,

1/2 if − 1 < z 6 0 ,

3/2 if z 6 −1 .

(11)

Discretization of the gradient We consider the standard forward and
backward first order differences:

D+v(xi) =
v(xi+1) − v(xi)

∆x
and D−v(xi) =

v(xi) − v(xi−1)

∆x
.

Finally, we consider the two component vector Dvi = (D−v(xi),D
+v(xi)).
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Similarly to Cacace et al. [6], we consider the following Osher–Sethian [21]
upwind discretization of the modulus of the gradient. Let S = (p,q) ∈ R2,
we define the following function, that we use for the discretization of the
gradient G+(S) = [max(p, 0)2 + min(q, 0)2]

1/2.

Discretization of the local operator Concerning the local operator H̄(·),
as in Costeseque et al. [7] we consider the discretization

H̄d(Dvi) = max
{
H̄+(D−vi), H̄

−(D+vi)
}

,

where H̄− and H̄+ are defined in (7).

Finally, we introduce for any discrete function v : {−n, . . . ,n}→ R ,

Ri[v] := Ri([v],Dvi) = ψR(xi) ·Md
i [v] · φ(xi) ·G+(Dvi)

+ (1 −ψR(xi)) · H̄d(Dvi).

Similarly, we define R̃ and R̃ by replacing Md with M̃d.

To summarize, in the rest of the article, for all discrete function v : {−n, . . . ,n}→
R , we consider the following numerical scheme:

δvi + Ri[v] = 0 for i ∈ {−n+ 1, . . . ,n− 1},

δvi + H̄
−(D+vi) = 0 for i = −n ,

δvi + H̄
+(D−vi) = 0 for i = n .

(12)

Remark 5 (Notation for the discretization of the non-local operator). Since the
function J inside the non-local operator is of bounded support, we introduce
the following notations, which are the discrete equivalents of h0 and hmax,

j0 = max {j ∈ {−n, . . . ,n} s.t. xj − ∆x/2 < h0} ,

jmax = min {j ∈ {−n, . . . ,n} s.t. xj + ∆x/2 > hmax} .
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3.2 Viscosity solution for the numerical scheme for the
approximated cell problem

To simplify the notation, we introduce

Fi([v],Dvi) =


Ri([v],Dvi) if xi ∈ (−l, l),

H̄−(D+vi) if xi = −l ,

H̄+(D−vi) if xi = l .

Similarly, we define F̃ by replacing R with R̃. We introduce the following
definition of viscosity solution for (12).

Definition 6 (Viscosity solution for the approximated cell problem scheme).
Let us consider a function v : {−n, . . . ,n} → R . We say that v is a sub-
solution (respectively a super-solution) of (12) if for all i ∈ {−n, . . . ,n}
δvi + Fi([v],Dvi) 6 0 (respectively δvi + F̃i([v],Dvi) > 0). Then we say
that v is a solution of (12) if and only if it is a sub- and a super-solution.

Remark 7. The notion of discrete viscosity solutions is necessary here because
of the discontinuity inside the non-local operator. We could not work with a
regularised version of E because we do not have a stability result with respect
to E. Moreover, in Section 5 and Appendix A (which contain mathematical
proofs) the interest of such a definition becomes evident. Appendix A proves
the existence of solutions for (12).

The main result of this article is the following convergence result whose proof
is postponed until Section 5.

Theorem 8 (Convergence). Using the same notations as in (10). Let
(v∆xi )i∈{−n,...,n} be a solution of (12), then the function v∆x] (defined as in (10))
converges locally uniformly as ∆x→ 0 to the unique continuous viscosity so-
lution of (13).

Remark 9 (Condition on the discretization step). In the rest of the article,
we consider that the integer n is big enough (∆x is small enough) so that
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j0 > 1 . Given the standard values of h0 (> 2 metres), this is not a very
restrictive condition but it helps to simplify the computations (regarding
the monotonicity of the scheme) since for any i ∈ {−n, . . . ,n} the term vi+1

appears only on the gradient in Fi([v],Dvi).

4 Viscosity solutions for the approximated
cell problem

In this section, we study (9). In order to simplify the notation, we drop the
index δ in vδ. We also present the definition of viscosity solutions for (9).
The user’s guide of Crandall, Ishii, Lions [8] and the book of Barles [3] give a
good introduction to viscosity solutions.

4.1 Viscosity solution for the continuous approximated
cell problem

For l ∈ (r,+∞), r� l and r 6 R� l , we consider the problem
δv+ψR(x)M[v](x) · φ(x) · |vx|

+ (1 −ψR(x))H̄(vx) = 0 for x ∈ (−l, l),

δv+ H̄−(vx) = 0 for x = −l ,

δv+ H̄+(vx) = 0 for x = l ,

(13)

with M[G](x) =
∫hmax

h0
J(z)E (G(x+ z) −G(x))dz− 3

2
Vmax ,

E(z) =


0 if z > 0 ,

1/2 if − 1 6 z < 0 ,

3/2 if z < −1 ,

and J = V ′ on R.
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Similarly, we define M̃[G](x) =
∫hmax

h0
J(z)Ẽ (G(x+ z) −G(x))dz − 3

2
Vmax ,

with Ẽ defined in (11).

In order to simplify the notations, we introduce the function

F(x, [v], vx) =


ψR(x)M[v](x) · φ(x) · |vx|

+ (1 −ψR(x))H̄(vx) if x ∈ (−l, l),

H̄−(vx) if x = −l ,

H̄+(vx) if x = l .

Similarly, we define F̃ by replacing M by M̃.

We work with viscosity solutions, and the boundary conditions of (13) be
interpreted in the classical sense of viscosity solutions with Neumann boundary
conditions. That is why we introduce

I(x, [v], vx) =


ψR(x)M[v](x) · φ(x) · |vx|

+ (1 −ψR(x))H̄(vx) if x ∈ (−l, l),

min(H̄(vx), H̄
−(vx)) if x = −l ,

min(H̄(vx), H̄
+(vx)) if x = l ,

and

Ĩ(x, [v], vx) =


ψR(x)M̃[v](x) · φ(x) · |vx|

+ (1 −ψR(x))H̄(vx) if x ∈ (−l, l),

max(H̄(vx), H̄
−(vx)) if x = −l ,

max(H̄(vx), H̄
+(vx)) if x = l .

Definition 10 (Viscosity solution for the continuous approximated cell prob-
lem). An upper semi-continuous function (respectively lower semi-continuous)
v : [−l, l]→ R is a viscosity sub-solution (respectively a super-solution) of (13)
in [−l, l], if for all x ∈ [−l, l] and all ϕ ∈ C1([−l, l]) such that u−ϕ reaches
a maximum (respectively a minimum) at the point x,

δv(x) + I(x, [v],ϕ ′) 6 0 (respectively δv(x) + Ĩ(x, [v],ϕ ′) > 0)
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We say that a function v is a solution of (13) if v∗ and v∗ are respectively a
sub and a super-solution of (13).

Remark 11. As in Forcadel et al. [13], we use this type of definition in order to
have a stability result for the non-local term. Da Lio et al. [9] and Slepčev [23]
gave such a definition.

We now give a slightly stronger result than a stability result for the sub and
super-solutions of (13) that I use to prove the convergence in Section 5 of the
numerical scheme.

Proposition 12 (Stability for (13)). Let (um)m be a sequence of measurable
functions and let u denote lim sup∗um (respectively u = lim inf∗um). Let
(xm,pm)→ (x0,p) in [−l, l]×R be such that um(xm)→ u(x0) (respectively
um(xm)→ u(x0)). Then

lim inf
m→+∞ F(xm, [um],pm) > I(x0, [u],p) (14)(
respectively lim sup

m→+∞ F̃(xm, [um],pm) 6 Ĩ(x0, [u],p)

)
.

In order to prove Proposition 12, we use the following lemma proved by
Slepčev [23].

Lemma 13. Let (fm)m be a sequence of measurable functions on R, and
consider f = lim sup∗fm and f = lim inf∗fm . Let (am)m be a sequence of R
converging to zero. Then

L({fm > am}\{f > 0})→ 0 as m→ +∞
and L({f > 0}\{fm > am})→ 0 as m→ +∞,

where L(A) denotes the Lesbegue measure of measurable set A.

Proof of Proposition 12: We just do the proof for u. We distinguish two
cases.
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Case 1: x0 ∈ (−l, l). From the definition of F, the only problem we have is
the non-local operator. We claim that for m big enough

M[um](xm) >M[u](x0) − εm with lim
m→+∞ εm = 0 . (15)

Using (4), E(β) = 1
2
1{β∈[−1,0)} +

3
2
1{β<−1} =

1
2
1{β<0} + 1{β<−1} . We get that∫

R
J(z)E(um(xm + z) − um(xm))dz−

∫
R
J(z)E(u(x0 + z) − u(x0))dz

=

∫
R
J(z)
{

1{um(xm+z)−um(xm)<−1} − 1{u(x0+z)−u(x0)<−1}

}
dz (16)

+

∫
R

1

2
J(z)
{

1{um(xm+z)−um(xm)<0} − 1{u(x0+z)−u(x0)<0}

}
dz .

Using Lemma 13, for n big enough,∫
R
J(z)
{

1{u(x0+z)−u(x0)>−1} − 1{um(xm+z)−um(xm)>−1}

}
dz

> −

∫
R
J(z)1{Am(z)\A(z)} > −

εm

2
,∫

R

1

2
J(z)
{

1{u(x0+z)−u(x0)>0} − 1{um(xm+z)−um(xm)>0}

}
dz (17)

> −
1

2

∫
R
J(z)1{Bm(z)\B(z)} > −

εm

2
,

with{
Am(z) = {um(xm + z) − um(xm) > −1} ∪ {u(x0 + z) − u(x0) > −1},

A(z) = {u(x0 + z) − u(x0) > −1}

and{
Bm(z) = {um(xm + z) − um(xm) > 0} ∪ {u(x0 + z) − u(x0) > 0},

B(z) = {u(x0 + z) − u(x0) > 0}.
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Using (16) and (17), we prove (15). Given that x0 ∈ (−l, l), for m big enough
we have xm ∈ (−l, l). Using the definition of F and (15),

ψR(xm)M[um](xm) · φ(xm) · |pm|+ (1 −ψR(xm))H̄(pm)

> ψR(xm)M[u](x0) · φ(xm) · |pm|
+ (1 −ψR(xm))H̄(pm) − εmψR(xm) · φ(xm) · |pm|.

Using that the terms on the right are continuous, we pass to the limit as m
goes to infinity to obtain (14).

Case 2: x0 = −l or x0 = l . In this case, using Definition 10 and the
continuity of H̄, we obtain (14). This ends the proof of Proposition 12. ♠

Theorem 14 (Comparison principle). Let u and v be respectively a sub and
a super-solution of (13), then for all x ∈ [−l, l], u(x) 6 v(x).

Proof: The proof of this theorem comes from the comparison principle [12,
Thm 4.4] for the non-local term. The only remaining difficulty is proving
this result at the boundaries. However, for x close to l2 the function GR is
the effective Hamiltonian H̄. Therefore, we proceed as in the proof of Galise
et al. [14, Prop. 4.1] and consider the boundaries as a network composed of
a single lane and a junction point then we use the results from Imbert and
Monneau [17] and so we skip the rest of the proof. Notice that Definition 10 is
equivalent at the boundaries to the definition of relaxed viscosity solution [17,
Defn 2.1] in the case of a single lane with a junction point. ♠

Theorem 15 (Existence and uniqueness). Given Assumption 1, there exists
a unique solution vδ of (13). Moreover, this solution is continuous and for all
x ∈ [−l, l], 0 6 vδ(x) 6 C0/δ .
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Finally, the following result from Forcadel et al. [13, Proof of Prop. 6.4]
justifies considering (13) and looking for a numerical approximation of vδ.

Proposition 16. Up to a subsequence, limδ→0 −δv
δ(0) = λl,R .

Remark 17 (Bounds on the non-local operator). Given the definition of the
non-local operators M and M̃, for any function G : R→ R and any x ∈ R ,
−3

2
Vmax 6 M[G](x) 6 M̃[G](x) 6 0 . Given the definition of Md and M̃d,

this inequality hold for the discrete non-local operators.

5 Convergence of the numerical scheme for
the approximated cell problem

This section is devoted to the proof of Theorem 8 which is an adaptation of
the proof of convergence from Barles and Souganidis [4] to a non-local pde.
Before passing to the proof of Theorem 8, we give some preliminary results
concerning the monotonicity of the numerical scheme (12) and the discrete
barriers of the solutions of (12).

Lemma 18 (Monotonicity of F̃ and F). Consider Assumption 1. Let v,w be
two discrete functions such that

vj 6 wj for all j ∈ Z . (18)

Also assume that there exists an index i ∈ Z such that vi = wi . Then
Fi([v],Dvi) > Fi([w],Dwi) and F̃i([v],Dvi) > Fi([w],Dwi).

Proof: We present the proof for F̃i and we skip it for Fi since the proof is
similar. Let us begin by proving the monotonicity for the non-local term, first
we want to prove that M̃d

i [v] > M̃
d
i [w]. Using the notations from Remark 5

M̃d[v]](xi) =

∫hmax

h0

J(z)E∗ (v](xi + z) − v](xi))dz−
3

2
Vmax
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=

jmax∑
j=j0

∫xi+∆x/2

xj−∆x/2

J(z)E∗(v](xi + z) − v](xj))dz−
3

2
Vmax

=

jmax∑
j=j0

∫
Qj

J(z)dz {E∗(vi+j − vi)}−
3

2
Vmax

>
jmax∑
j=j0

∫
Qj

J(z)dz {E∗(wi+j −wi)}−
3

2
Vmax = M̃d

i [w],

where we used for the last line that Ẽ is non-increasing, with (18) and that J
is non-negative.

Moreover, using (18) D+vi 6 D+wi and D−vi > D−wi . These imply in
particular that both max(D+vi, 0)2 6 max(D+wi, 0)2 and min(D−vi, 0)2 6
min(D−wi, 0)2. Combining the previous inequalities gives the inequality
G+(Dvi) 6 G+(Dwi). Recall that M̃d is non-positive (Remark 17) and
therefore,

M̃d
i [v] ·G+(Dvi) > M̃

d
i [v] ·G+(Dwi) > M̃

d
i [w] ·G+(Dwi). (19)

Let us now prove the monotonicity for the local term, using that H̄+ is non-
decreasing and that H̄− is non-increasing, since both H̄+(D−vi) > H̄+(D−wi)
and H̄−(D+vi) > H̄−(D+wi), this implies in particular that

H̄d(Dvi) = max(H̄−(D+vi), H̄
+(D−vi))

> max(H̄−(D+wi), H̄
+(D−wi)) = H̄(Dwi). (20)

Combining (19) and (20), we get F̃i([v],Dvi) > F̃i([w],Dwi). ♠

Lemma 19 (Existence of discrete barriers for (13)). Consider Assumption 1.
The discrete functions defined by v−i = 0 and v+i = C0/δ for all i ∈ {−n, . . . ,n}
with C0 = |H0| = |minp∈R H̄(p)| are respectively a sub and a super-solution
of (13).
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Proof: We only prove that v+ is a super-solution, since the sub-solution
case is similar and even simpler. Using the form of (13), for all i ∈ {−n, . . . ,n}
δv+i + F̃i ([v

+], (0, 0)) > δv+i +H0 = |H0|+H0 = 0 . Therefore, v+ is a super-
solution of (13). ♠

Proposition 20 (Discrete barriers). Let u−
i = 0 and v+i = C0/δ for all

i ∈ {−n, . . . ,n} with C0 = |H0|. Then every solution v of (12) satisfies
u− 6 v 6 v+.

Proof: First prove v− v+ 6 0 . We introduce M = maxi∈{−n,...,n}{vi − v
+
i },

and we assume the maximum is reached for an index i0 ∈ {−n, . . . ,n} .
Therefore

vi0 −M = v+i0 and ṽi := vi −M 6 v+i for all i ∈ {−n, . . . ,n}. (21)

Notice that Fi([v],Dvi) is invariant by addition of constant to v and there-
fore, Fi([ṽ],Dṽi) = Fi([v],Dvi). Moreover, using Lemma 18 and (21),
Fi0([v],Dvi0) = Fi0([ṽ],Dṽi0) > Fi0([v

+],Dv+i0). Using that v is a solu-
tion of (12) and in particular a sub-solution, 0 > δvi0 + Fi0([v],Dvi0) >
δv+i0 + δM+ Fi0([v

+],Dv+i0). In particular, replacing v+i0 = C0/δ

δM 6 −C0 − Fi0([v
+],Dv+i0) =

{
0 if i0 = −n ,

−C0 if i0 ∈ {−n+ 1, . . . ,n},

where we use for the equality the definition of F and that Dv+i0 = (0, 0) (in this
case the only term that is not equal to 0 is H̄−(0) = H0 = −C0). Therefore,
M 6 0 . The proof that v− − v 6 0 is similar to the previous one and we skip
it. ♠

Proof of Theorem 8: We introduce

v(x) = lim sup
y→x
∆x→0

v∆x] (y) and v(x) = lim inf
y→x
∆x→0

v∆x] (y).
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Here we add the superscript ∆x in order for the proof to be clearer. As in (10)
the function v∆x] is the piecewise extension of a discrete function v∆x which
is a solution of (12) (Definition 6).

We want to prove that v and v are respectively a sub and a super-solution
of (13). If that is true, then the comparison principle for (13) implies that
v 6 v on [−l, l]. However, by construction v 6 v , which implies that
v = v = vδ the unique continuous solution of (13), this implies the local
uniform convergence of v∆x] .

Let us now prove that v is a sub-solution of (13). We only do the proof in
the sub-solution case, since the super-solution case is very similar and we
skip it. We argue by contradiction and assume that there exists a function
ϕ ∈ C1([−l, l]) and a point x̄ ∈ [−l, l] such that u − ϕ reaches a strict
local maximum at x̄ and that δv(x̄) + I(x̄, [v],ϕx(x̄)) = θ > 0 . Moreover,
without any loss of generality, we assume that u(x̄) = ϕ(x̄) and that ϕ >
2 sup∆x ‖v∆x] ‖∞ outside the ball B(x̄, r), where r > 0 is such that u(x)−ϕ(x) 6
0 = u(x̄) −ϕ(x̄) in B(x̄, r). Then there exists sequences ∆xm ∈ [0,+∞) and
ym ∈ [−l, l], such that as m→ +∞

∆xm → 0, ym → x̄, v∆xm] (ym)→ v(x̄), and

ym is a global maximum point of v∆xm] (·) −ϕ(·).

We denote by ξm = v∆xm] (ym) −ϕ(ym), and we have that ξm → 0 as m→
+∞ . Moreover, for all x ∈ [−l, l] v∆xm] (x) 6 ϕ(x) + ξm and v∆xm] (ym) =
ϕ(ym) + ξm . We denote by xim the point in the grid such that ym ∈ Qim ,
therefore |xim − ym| 6 ∆xm and

0 > δv∆xmim
+ Fim

([
v∆xm

]
,Dv∆xmim

)
> δv∆xmim

+ Fim
([
v∆xm

]
,Dϕ(ym)

)
> δv∆xm] (ym) + F

(
xim ,

[
v∆xm]

]
,ϕ ′(x0) + o(∆xm)

)
,

where we used that v∆xm is a sub-solution of (12) for the first line. For the
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second line,

Dϕ(ym) =

(
ϕ(ym) −ϕ(ym − ∆xm)

∆xm
,
ϕ(ym + ∆xm) −ϕ(ym)

∆xm

)
and invoked the monotonicity of the discrete operator Fim (Lemma 18).
Finally, for the third line, we use that ϕ ∈ C1 and the definition of Fim . We
now pass to the limit in the previous inequality

0 > lim inf
m→+∞

(
δv∆xm] (im) + F(xim , [v∆xm] ],ϕ ′(x0) + o(∆xm))

)
> δv(x̄) + I(x̄, [v],ϕ ′(x̄)),

where we use Proposition 12 with um = v∆xm] , xm := xim , pm := ϕ ′(x̄) +

o(∆xm) and notice that v∆xm] (xim) = v
∆xm
] (ym). The last inequality provides

us with a contradiction which ends the proof of Theorem 8. ♠

6 Numerical simulations

In this section, we present an algorithm in Section 6.1 that provides and
approximation of the solution of (9) which in turn provides an approximation
of the flux-limiter Ā. This algorithm comes from the results in Appendix A,
and it is based on the properties of the non-local operator. We provide some
numerical tests.

6.1 The algorithm

The following algorithm is inspired by the one from Cacace et al. [6], and
by the results from Appendix A. The idea of the algorithm is to build the
extremal solutions from Corollary 30, to build the biggest sub-solution and
the smallest super-solution. Therefore obtaining an interval that contains all
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the solutions of (12) and therefore obtaining an approximation of the solution
of (13).

We introduce two parameters εd and εc respectively a tolerance to quit the
dichotomy process updating the sub and super-solutions (numerical equivalent
of Proposition 28) and a tolerance for the convergence of the numerical scheme.

1. Initialization: for i = −n, . . . ,n , u−
i = 0 and v+i = C0/δ .

2. Initialize dichotomy intervals: for i = −n, . . . ,n , s−left,i = u−
i and

s−right,i = u−
i + 0.1k−i with k−i the first integer such that δs−right,i +

Fi[u
−](s−right,i) > 0 , and s−left,i = v+i − 0.1k+i and s+right,i = v+i with k+i

the first integer such that δs−left,i + F̃i[v
+](s+left,i) < 0 .

3. Dichotomy process: for i = −n, . . . ,n optimize respectively in s−i ∈
[s−left,i, s

−
right,i] and s

+
i ∈ [s+left,i, s

+
right,i], the inequalities δs

−
i +Fi[u

−](s−i ) 6

0 and δs+i + F̃i[v
+](s+i ) > 0 until s−right,i−s

−
left,i < εd and s+right,i−s

+
left,i <

εd .

If ‖u− − s−left‖∞ 6 εc and ‖v+ − s+left‖∞ 6 εc go to Step 4 else swap
u− ↔ s−left and v

+ ↔ s+right and go to Step 2.

4. The interval [u−, v+] contains all solutions of the numerical scheme (12)
and therefore gives an approximation of the solution of (13). In partic-
ular, the value of Ā is approximated by the interval [−δv+0 ,−δu−

0 ].
Remark 21. This algorithm can be extremely costly computationally. However,
parallel programming of Step 2 and Step 3 accelerates the process.

6.2 Setting of the computation

We consider an uniform grid of the interval [−l, l] with 2n+1 points, n ∈ N\{0},
and we denote by ∆x = l/n the discretization step. For all i ∈ {−n, . . . ,n} ,
we denote by xi = ∆x · i the nodes of the grid.
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For all the numerical computations, we consider for equation (13), the following
values for the different parameters.

l = 200 , R = 100 , εc = εd = 0.001 , and δ = 0.001 . (22)

For all the numerical computations, regarding the values for the discretization,
we consider n = 400 and ∆x = 0.5 .

For the computation of the discrete non-local operator, we recall the following
result, using the notations from Remark 5 and from (10),

M[v]](xi) =

∫hmax

j0

J(z)E (v](xi + z) − v](xi))dz−
3

2
Vmax

=

jmax∑
j=j0

∫xj+∆x/2

xj−∆x/2

J(z)E(v](xi + z) − v](xj))dz−
3

2
Vmax

=

jmax∑
j=j0

∫xj+∆x/2

xj−∆x/2

J(z)E(vi+j − vi)dz−
3

2
Vmax

=

jmax∑
j=j0

E(vi+j − vi)

∫xj+∆x/2

xj−∆x/2

J(z)dz−
3

2
Vmax

=

jmax∑
j=j0

E(vi+j − vi)Jj −
3

2
Vmax ,

with Jj = V(xj + ∆x/2) − V(xj − ∆x/2).
Remark 22. Recall that we want to obtain a numerical approximation of the
constant called flux-limiter Ā in order for the macroscopic model (5) to be
completely determined. Moreover, we recall that Ā contains the memory
of the effect of the microscopic perturbation (function φ in (1)). In the
numerical tests we study the influence of the form of the local perturbation
(function φ) but also we study the influence of the parameters l, δ and R

from (9) on the approximation of Ā. Moreover, the previous algorithm
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provides an approximation of the solution of (9) but given that the goal
of this article is to approximate Ā we only use one point provided by the
algorithm but an adaptation of this algorithm could be used to approximate
solutions of non-local non-linear pdes.

6.3 Qualitative properties of Ā

Before passing to the numerical tests, we recall a final result from Forcadel et
al. [13] regarding the qualitative properties of Ā, which we numerically verify
in the next section.

Proposition 23 (Qualitative properties of the flux limiter). Given Assump-
tion 1, the following qualitative properties on the flux limiter hold.

1. (Monotonicity of the flux-limiter) Let φ1,φ2 : R→ [0, 1] be two func-
tions satisfying (A6). Let Ā1 and Ā2 be their respective flux limiters.
If, for all x ∈ R , φ1(x) 6 φ2(x), then Ā1 > Ā2 .

2. (Flux interruption) Let φ be a function satisfying (A6). If φ = 0 on
an open interval, then Ā = 0 .

6.4 Numerical tests

Influence of φ0

First, we numerically verify Proposition 23.1 and see the influence of φ0 =
minxφ(x). We consider a Greenshields optimal velocity function,

V(h) =


0 if h 6 h0 ,

Vmax

[
1 − (h0/h)

2
]

if h > h0 ,

Vmax

[
1 − (h0/hmax)

2
]

if h > hmax .

(23)
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For the perturbation, we consider a function

φ(x) =


1 if |x| > r ,

φ0 if |x| 6 r/8 ,

−8x(1−φ0)
7r

+ 8φ0−1
7

if x ∈ (−r,−r/8),
8x(1−φ0)

7r
+ 8φ0−1

7
if x ∈ (r/8, r).

(24)

For the values of the different parameters for the optimal velocity function,
we take 

Vmax = 58 km / h,

h0 = 2 m,

hmax = 25 m .

(25)

For the local perturbation, we consider the radius of the perturbation r = 45 m.
Figure 3 shows an example of the local perturbation for two different values
of φ0. Notice that given the definition (24), if we consider two functions φ1,
φ2 with their respective minima φ1

0 < φ
2
0 , then φ1(x) 6 φ2(x) for all x ∈ R .

In order to see the influence of φ0 ∈ [0, 1] on Ā, we discretize the interval
[0, 1] 3 φ0 in 21 points (a step of 0.05) and we compute our estimate of Ā for
each of those φ0. For each φ0, we plot two points, since we have an interval
that approximates Ā.

Figure 4 shows that the approximation is decreasing with φ0, which numeri-
cally confirms Proposition 23.1 and notice that for φ0 = 0 , Ā is close to 0
which numerically confirms Proposition 23.2.

In the case φ0 = 1 , the model is equivalent to a model without a perturbation.
Therefore, we should not have a flux-limiting condition. Given the defini-
tion (6) of FĀ this can only happen if Ā = minp H̄(p). In our computational
setting H0 ≈ −11.16 and the approximation of the flux–limiter Ā is of −11.11
which is not very far and which also validates our numerical approach.
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Figure 3: Example of φ with r = 45m: (red) φ0 = 0.25; and (green) φ0 = 0.5.
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Influence of the radius of influence of the perturbation

We consider the same optimal velocity function as in the previous simulation
and the same perturbation and we make the radius of influence of the pertur-
bation vary in the interval [25, 75]. Figure 5 contains the approximation of Ā
for φ0 = 0.25 and for different values of r ∈ [25, 75].

Figure 5 shows that in this case the approximation of Ā increases with
the radius of the perturbation. However, for r > 40 m the approximation
remains the same which could imply that for r big enough, the radius of the
perturbation does not influence the value of Ā. Moreover, for smaller values
of r, Ā is smaller (meaning that the flux is less limited) which is logical, since
for a radius r = 0 , we expect to have Ā = H0 (there is no perturbation).
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Figure 4: Approximation of Ā ∈ [−δv+0 ,−δu−
0 ] plotted versus different values

of φ0. The curves −δv+0 (in red) and −δu−
0 (in green) were computed using

Section 6.1 for different values of φ0.
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Two different perturbations

Now we take into account two different perturbations and see how does our
approximation of Ā changes with each perturbation. We consider the same
perturbation as in the previous simulation and we introduce the following
perturbation

φ̃(x) =

{
1 if |x| > r ,
(1−φ0)x

2

r2
+ φ0 if |x| 6 r .

We consider the same radius of influence r = 45 m. Figure 6 plots the two
perturbations φ and φ̃ with φ0 = 0.25 .
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Figure 5: Approximation of Ā ∈ [−δv+0 ,−δu−
0 ] plotted versus different values

of r and φ0 = 0.25 . The curves −δv+0 (in red) and −δu−
0 (in green) were

computed using Section 6.1 for different values of r.
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As before, we make φ0 vary inside the interval [0, 1]. Figure 7 compares the
upper and lower bound of the approximation of Ā for different values of φ0.

Figure 7 shows that the approximation of Ā for φ̃ numerically verifies Propo-
sition 23. Moreover, notice that the values for both perturbations are very
similar. This could imply that the form of the perturbation does not influence
the result but it is only φ0 that determines the value of the flux limiter.
Figure 8 plots the absolute difference between the two approximations and
we notice the difference is very small.
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Figure 6: The functions φ and φ̃, with r = 45 m and φ0 = 0.25 .
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Influence of δ

We consider the optimal velocity function (23) with (25) and the perturba-
tion (24), with r = 45 m and φ0 = 0.25 . To see the influence of δ on the
approximation of Ā, we fix l and R to the values of (22) and we make δ vary
in [0.001, 0.1] with a step of 0.001.

Figure 9 shows that there is a lot of oscillations on the behaviour of the
estimates of Ā. However, the upper and lower bound remain close to each
other. Given that the difference between the estimates is small, we can
assume that considering δ = 0.001 gives a good enough approximation of the
flux-limiter.
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Figure 7: Lower bound for the approximation of Ā for φ and φ̃ versus different
values of φ0 (left) upper bound for the approximation of Ā for φ and φ̃ versus
different values of φ0 (right).
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Figure 8: Absolute difference of the lower bound for the approximation of Ā
for φ and φ̃ versus different values of φ0 (left). Absolute difference of the
upper bound for the approximation of Ā for φ and φ̃ versus different values
of φ0 (right).
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Figure 9: Approximation of Ā ∈ [−δv+0 ,−δu−
0 ] versus different values of δ.

The curves −δv+0 (in red) and −δu−
0 (in green) were computed using Sec-

tion 6.1 for different values of δ.
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Influence of R (transition between the non-local and local
operators)

We consider the same optimal velocity function and perturbation as in the
previous simulation, with the same parameters. To see the influence of R on
the approximation of Ā, we fix l and δ to the values of (22) and we make R
vary in [80, 150] with a step of 1.

Figure 10 shows a lot a oscillation on the behaviour of the estimates for Ā
when we make R vary. However, notice that for R > 80 the difference between
the upper and lower estimate is very small (less than 0.4). This suggest that
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Figure 10: Approximation of Ā ∈ [−δv+0 ,−δu−
0 ] versus different values

of R. The curves −δv+0 (in red) and −δu−
0 (in green) were computed using

Section 6.1 for different values of R.
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considering R > 80 is enough for a good approximation of Ā.

Influence of l

We consider the same optimal velocity function and perturbation as in the
previous simulation, with the same parameters. To see the influence of l on
the approximation of Ā, we fix R and δ to the values of (22) and we make l
vary in [180, 300] with a step of 1.

Figure 11 shows that for l ∈ [180, 220] the approximation of Ā remains
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Figure 11: Approximation of Ā ∈ [−δv+0 ,−δu−
0 ] versus different values

of l. The curves −δv+0 (in red) and −δu−
0 (in green) were computed using

Section 6.1 for different values of l.
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constant. The behaviour of the approximation for bigger values of l can be
explain by the fact that first δ should go to 0 before passing to the limit
as l goes to infinity. Therefore, there is a compromise to be made between l
and δ. However, for δ = 0.001 taking l = 200 seems to give a reasonable
approximation.

6.5 Conclusion

We have completed the result previously presented by Forcadel, Salazar and
Zaydan [13] by providing a numerical approximation of the constant called
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flux limiter Ā. We recall that this constant contains at the macroscopic
scale the memory of a local perturbation that slows down vehicles at the
microscopic scale. In order to obtain such an approximation we were forced
to use equation (9) that was obtain by Forcadel et al. [13] while proving the
homogenisation result in that article for the microscopic model (1).

Equation (9) is a non-local non-linear equation which solution we needed
in order to approximate the flux limiter Ā. However, the form of this pde
allowed us to use very interesting numerical analysis techniques. We used
a numerical scheme inspired by the ones of Cacace et al. [6], Costeseque et
al. [7] and Forcadel [11] (used for traffic flow and dislocations dynamics).
The techniques we use can be used to discretise non-local operators and
non-linear terms. Moreover, we provided a convergence result to justify our
numerical scheme. The proof of convergence is an adaptation for non-local
pdes of the proof for numerical scheme for non-linear pdes done by Barles
and Souganidis [4].

Moreover, we presented an algorithm to compute an interval that contains an
approximation of vδ(x) solution of (9) at the point x. This approximation
allows us to compute the approximation of the flux limiter. This algorithm
inspired by the one by Cacace et al. [6] (used for dislocations dynamics) and
justified by the results in Appendix A can be adapted for other pdes given
that the numerical scheme satisfies similar conditions to the ones we have in
our scenario.

In the last section, the numerical results allowed us to numerically verify
some of the qualitative properties of Ā proven by Forcadel et al. [13] which
justifies our choice of numerical scheme. These results also allowed us to see
the influence of the different parameters of (9) on the approximation of the
flux limiter.

Obtaining macroscopic models for traffic flow like (5) from microscopic models
is very important because it allows us to see at the macroscopic scale the
influence of microscopic details. This allows us to rigorously obtain more
precise macroscopic models.
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A Discrete approximated cell problem

The following results are similar to the ones by Cacace et al. [6], for the
readers convenience, we recall them and adapt them to our problem. The
idea is to obtain some results on the numerical scheme to construct a solution
to (12).

A.1 Comparisons for the numerical scheme

In this section, we prove the existence of solutions for the numerical scheme (12).
We use the following notations, for every s ∈ R and every discrete function v,
we define

D+
vi
(s) =

vi+1 − s

∆x
, D−

vi
(s) =

s− vi−1

∆x
, Dvi(s) =

(
D−
vi
(s),D+

vi
(s)
)

.

For every i ∈ {−n, . . . ,n} , we set

Md
i [v](s) =

∫hmax

h0

J(z)E (v](xi + z) − s)dz−
3

2
Vmax ,

M̃d
i [v](s) =

∫hmax

h0

J(z)Ẽ (v](xi + z) − s)dz−
3

2
Vmax ,

Ri[v](s) = ψR(xi) · φ(xi) ·Md
i [v](s) ·G+(Dvi(s))

+ (1 −ψR(xi)) · H̄d (Dvi(s)) .

We define similarly R̃i by replacing Md
i with M̃d

i . Finally, we define for all
i ∈ {−n, . . . ,n} ,

Fi[v](s) =


Ri[v](s) if i ∈ {−n+ 1, . . . ,n− 1},

H̄−(D+
vi
(s)) if i = −n ,

H̄+(D−
vi
(s)) if i = n .

Similarly we define F̃i by replacing Ri by R̃i.
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Remark 24 (Monotonicity of the numerical scheme). By the definition of Fi
and F̃i and by Lemma 18, for all i ∈ {−n, . . . ,n} :

1. Fi[v](s) and F̃i[v](s) are non-decreasing with respect to s;

2. Fi[v](s) and F̃i[v](s) are non-increasing with respect to v;

3. Fi[v](vi) = Fi([v],Dvi) and F̃i[v](vi) = F̃i([v],Dvi);

4. F̃i[v](s) 6 Fi[v](t) for all s < t .

Lemma 25 (Comparison). Let v be a discrete function and let i ∈ {−n, . . . ,n} .
There exists a unique si ∈ R such that

− F̃i[v](si) 6 δsi 6 −Fi[v](si). (26)

Moreover, let w be a discrete function. Then the following implications hold:

1. δwi + Fi[w](wi) 6 0 and w 6 v ⇒ wi 6 si ;

2. δwi + Fi[w](wi) > 0 and w > v ⇒ wi > si ;

3. δwi + F̃i[w](wi) > 0 and w > v ⇒ wi > si ;

4. δwi + F̃i[w](wi) < 0 and w 6 v ⇒ wi < si .

Proof: The existence of a si ∈ R satisfying (26) comes from −Fi[v](s)
and −F̃i[v](s) are non-increasing in s and that δs is strictly increasing in s.
As for the uniqueness of si, let us argue by contradiction and assume there
exists s1

i and s2
i with s1

i < s
2
i such that −F̃i[v](s

1
i) 6 δs1

i 6 −Fi[v](s
1
i) and

−F̃i[v](s
2
i) 6 δs2

i 6 −Fi[v](s
2
i). However, using Remark 24.4, −Fi[v](s2

i) 6
−F̃i[v](s

1
i), using this and combining the previous inequalities we obtain

Fi[v](s
1
i) − F̃i[v](s

2
i) 6 δ(s

2
i − s

1
i) 6 F̃i[v](s

1
i) − Fi[v](s

2
i) 6 0 . (27)

This gives us that s2 − s1 6 0 which is a contradiction.
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We now prove Lemma 25.1, again we argue by contradiction and assume that
wi > si . Then using (26),

δwi > δsi > −F̃i[v](si) > −F̃i[w](si) > −Fi[w](wi) > δwi,

where we have used for the third and fourth inequality respectively Re-
mark 24.2 and Remark 24.4. The previous inequality gives us the desired
contradiction.

We now prove Lemma 25.2. We argue by contradiction and assume that
wi 6 si , using (26),

δwi 6 δsi 6 −Fi[v](si) 6 −Fi[w](si) 6 −Fi[w](wi) < δwi,

where we have used for the third and fourth inequality respectivelyRemark 24.1
and Remark 24.2. The previous inequality gives us the desired contradiction.
The proofs of Lemma 25.3 and Lemma 25.4 are similar and we skip them.

♠

A.2 Construction of minimal and maximal solutions

This section is devoted to the proof of existence and to the construction of
minimal and maximal solutions. In order to prove the existence of discrete
solution for (12), we provide a constructive method that provides us with the
minimal and maximal solutions.

Proposition 26 (Definition of the map Φ). There exists a map Φ : R2n+1 →
R2n+1 satisfying the following properties.

1. Let u− be a sub-solution of (12), that is, δu−
i + Fi[u

−](u−
i ) 6 0 for all

i ∈ {−n, . . . ,n} . Then

(a) u− 6 Φ[u−] (with u− = Φ[u−] if and only if u− is a solution);

(b) Φ[u−] is a sub-solution of (12).
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2. Let u+ be a super-solution of (12), that is, δu−
i + F̃i[u

−](u−
i ) > 0 for

all i ∈ {−n, . . . ,n} . Then

(a) u+ > Φ[u+] (with u+ = Φ[u+] if and only if u+ is a solution);

(b) Φ[u+] is a super-solution of (12).

Proof: Let us prove the result for the sub-solutions Proposition 26.1. Using
Lemma 25, for every i ∈ {−n, . . . ,n} there exists a unique s−i ∈ R such that

− F̃i[u
−](s−i ) 6 δs

−
i 6 −Fi[u

−](s−i ) and u−
i 6 s−i ,

the second inequality comes from Lemma 25.1 considering w = u−. Using the
real numbers s−i we construct the map Φ[u−]i = s

−
i for all i ∈ {−n, . . . ,n} .

By construction u− 6 Φ[u−], with the equality if and only if u− is a solution
of (12) (which proves (i) in (a)). Let us now prove thatΦ[u−] is a sub-solution
of (12). For all i ∈ {−n, . . . ,n} , by the definition of s−i ,

0 > δs−i + Fi[u
−](s−i ) > δs

−
i + Fi [Φ[u−]] (s−i )

= δΦ[u−]i + Fi [Φ[u−]] (Φ[u−]i),

where we use the second inequality that Fi[·](s) is non-increasing and that
u− 6 Φ[u−]. Therefore, Φ[u−] is a sub-solution of (12).

In the case of the super-solutions, Proposition 26.2, we define the map Φ
in the same way. Using Lemma 25, for every i ∈ {−n, . . . ,n} there exists a
unique s+i ∈ R such that

− F̃i[u
+](s+i ) 6 δs

+
i 6 −Fi[u

+](s+i ) and u+
i > s+i .

As before, the map Φ is constructed using the real numbers s+i : Φ[u+]i = s
+
i

for all i ∈ {−n, . . . ,n} . Proceeding as in the first part of the proof we can
prove the rest of Proposition 26.2. We skip the rest of the proof and this ends
the proof of Proposition 26. ♠
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Proposition 27 (Partial comparison principle). Let u− and u+ be re-
spectively a sub and a super-solution of (12) such that u− 6 u+ then
Φ[u−] 6 Φ[u+].

Proof: We argue by contradiction and assume that there exists a i0 ∈
{−n, . . . ,n} such that Φ[u−]i = s

−
i > s

+
i = Φ[u+]i . By definition of s+i ,

0 6 δs+i + F̃i[u
+](s+i ) < δs

−
i + F̃i[u

+](s+i )

6 δs−i + Fi[u
+](s−i ) 6 δs

−
i + Fi[u

−](s−i ),

where we use that s−i > s+i for the second inequality, and Remark 24.1
and Remark 24.2 for the third and fourth inequalities respectively. This
inequality gives us the desired contradiction because of the definition of s−i .

♠

Proposition 28 (Construction of solutions). Let u− and u+ be respectively
a sub and a super-solution of (12) such that u− 6 u+. We consider for
every k ∈ N , u−,k+1 = Φ[u−,k], with u−,0 = u−, and v+,k+1 = Φ[v+,k], with
v+,0 = u+. There exist two discrete functions u and v such that u−,k → u

and v+,k → v as k→ +∞ . Moreover, u and v are two solutions of (12). We
define Ψ[u−] := u and Ψ[v+] := v. Then

u− 6 Ψ[u−] 6 Ψ[u+] 6 u+,

and Ψ[u] = u if and only if u is a solution of (12).

Proof: Using Proposition 27 we get the following inequalities

u− 6 Φ[u−,k] 6 Φ[u−,k+1] 6 · · · 6 Φ[v+,k+1] 6 Φ[v+,k] 6 v+.

Therefore, the sequence (u−,k)k is non-decreasing and bounded from above
by v+, and the sequence (v+,k)k is non-increasing and bounded from below
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by u−. Passing to the limit as k goes to infinity in the previous inequalities,
we obtain

u− 6 lim
k→+∞u−,k =: u =: Ψ[u−] 6 Ψ[v+] := v := lim

k→+∞ v+,k 6 v+.

Let us now prove that u is a solution of (12) (the proof for v is similar and
we skip it). By definition of the sequence (u−,k)k, for all k ∈ N and for all
i ∈ {−n, . . . ,n} ,

− F̃i[u
−,k](u−,k+1

i ) 6 δu−,k+1
i 6 −Fi[u

−,k](u−,k+1
i ). (28)

We recall that E and Ẽ are respectively lower and upper semi-continuous,
which implies that R and R̃ are also lower and upper semi-continuous and in
particular that −R and −R̃ are respectively upper and lower semi-continuous.
Adding this to the continuity of the discrete gradient and of the functions H̄,
H̄+ and H̄−, passing to the limit as k goes to +∞ in (28) implies −F̃i[u](ui) 6
δui 6 −Fi[u](ui), which means that u is a solution of (12). Finally, Ψ[u] = u
if and only if u is a solution comes from the properties of Φ (Proposition 26).

♠

Proposition 29 (Extremal solutions in the interval (u−, v+)). Let u− and v+
be respectively a sub and super-solution of (12) such that u− 6 v+. Let Ψ[u−]
and Ψ[v+] be the two solutions provided by Proposition 28. Then every
solution v of (12) such that u− 6 v 6 v+ satisfies

u− 6 Ψ[u−] 6 v 6 Ψ[v+] 6 v+.

Proof: Considering v as a super-solution of (12), and using Proposition 28,
u− 6 Ψ[u−] 6 Ψ[v] = v. Similarly, considering v as a sub-solution of (12),
using Proposition 28, v = Ψ[v] 6 Ψ[v+] 6 v+. ♠

Combining Lemma 19 and Propositions 20 and 29 we obtain the following
corollary.
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Corollary 30. Let u−
i = 0 and v+i = C0/δ for all i ∈ {−n, . . . ,n} . Let Ψ[u−]

and Ψ[v+] be the solutions provided by Proposition 28, then every solution v
of (12) satisfies Ψ[u−] 6 v 6 Ψ[v+].
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