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Abstract

In order to obtain the numerical solution of evolution equations
which arise in various fields of science and technology, the computation
of matrix functions called ¢p-functions is required. This paper proposes
a new method called the shift-invert rational Krylov method for the
computation of matrix ¢-functions. This method efficiently computes
the matrix ¢-functions and allows the appropriate parameters to be
simply determined.
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1 Introduction

Evolution equations are utilized in various fields of science and technology.
Primary examples are the heat equation and the wave equation, both of which
occur in fluid dynamics. Let QO C R¢ be an open set, T >0, 1 € N, and
V C 12(Q) be a Hilbert space. Assume D is a differential operator on V.
Then, consider the function uw € CY((0,T]) x V which satisfies

— = Du, (1)

with some appropriate initial and boundary conditions. When equation (1)
is discretized in space using a finite element method, a differential-algebraic
equation of the following form results

where M € R™ ™ is an invertible matrix, and F is a vector valued function.
To solve this system, the exponential integrators are an effective method



1 Introduction C151

to undertake the time integration [5, 6]. At the ith step, an exponential
integrator rearranges F as F(y) = Liy +ni(y), and computes the scheme

r—1
Yir = do(c, AtM 'L )y; + At Z ar (AtMTIL)M 'y (Ya),

2)
Yir1 = Go(AM L y; + At Z b, (AtMTILO)M 'y (Yiy),

T=1

where At is the temporal step size, and a,, b, are the linear combinations of
¢ (k < 1), which are known as ¢-functions. The ¢-functions are defined as

d)(](Z) = eZ’
B dr-1(z) — (k+1).

Cl)k(Z)I , k:1,2,....
z

The simplest scheme is

Yipr = ™M Ly 4 Aty (AMTILOM 'y (ys).

There are various methods for computing matrix ¢-functions. Krylov subspace
methods are a valid option, since it is sufficient for scheme (2) to compute
the product ¢y (A)v, where A = AtM'L; and v = M 'n;(Yi) . Krylov
subspace methods approximate the matrix function multiplied with a vector
on a subspace of dimension smaller than n. The most simple and well-known
method is the Arnoldi method for ¢-functions (AP), but the convergence
of AP depends on the width of the numerical range of A [5]. To address
this issue, the rational Krylov method for ¢-functions (RKP) was proposed
by Beckermann and Reichel [1]. Gockler [3] showed that the RKP converges
independently of the width of the numerical range of A . However, it requires
the calculation of parameters called shifts during every step of the Krylov
process. Methods for choosing the optimal shifts for symmetric matrices have
been proposed by Giittel [4]. Gockler [3] has proposed methods for choosing
shifts for nonsymmetric matrices. However, since the shifts are complex, even
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if the matrices M and L; are real, complex values appear due to the shifts,
which increases computational costs. To solve this problem, a new method
called the shift-invert rational Krylov method (SIRKP) is investigated in this
paper. In this method, the appropriate real-valued shifts are determined,
which realize a faster convergence.

2 Rational Krylov method

In the following sections, the algorithm for the calculation of ¢y (A)v is
outlined. We define the numerical range of A as W(A) .= {u*Au | u €
C™, |lu| = 1}, and assume W(A) C C~, where C* :={z € C | R(z) = 0},
and || - [[ = - [l

The m-step rational Krylov process with the initial vector vi = v/||v|| is
j
Ny 1vi1 = (y1—A)lyy — Z hic v, (3)
k=1

where hk’)' = V]*{(Y]I — A)_l\)j , h)url’)' = H (’Y]I — A)_IV]' — Zi:l hk,]'ka , and
Y; > 0 is a different shift in every step for j = 1,..., m. This results in the
matrix relation

Vin = VinHimn D — AV Hi + (Yl — A)hmstmVim+1€ms

where Vi, = [vi,...,vi], Hn is an upper Hessenberg matrix, D,, :=
diag{yi,...,Ym}, and e; is the jth column of the identity matrix. It fol-
lows that

Ok (A)v = Vi bk (Vi AV ) Vi v = 1(A)v, (4)

for r € Pi/qm, where qm(x) = (y1 — %) -+ (Ym — X), P represents the
polynomials of degree less than or equal to m, and Pr,/qm ‘= {pPm/qm; Pm €

Pl
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3 Shift-invert rational Krylov method

The m-step rational Krylov process is computed using (3). However, this
study uses the shifts y; = N —j € R, where N € N satisfies y; > 0 for all
j=1,...,m. This results in the relation

Vi (Yl = A) " Vi = Hin (1= Hpn D + Y Hin) ™ =2 Ko, (5)

where D, := diag{y1,...,Ym}. Then, ¢ (A) is regarded as a function of
(YmI - A)ilu fm((‘YmI - A)il)va where fm(x) = d)k (Vm - Xil) ) and

br(AW = fr((YmI = A) v
~ Vinfm (Vi (ymI = A) 7 Vi) Vv
= Vi fn (K ) Vi V. (6)

m

In the RKP, the approximation (4) uses the same function in each step. On
the other hand, the approximation (6) depends on m, and changes at every
step. As do the matrices projected on to the rational Krylov subspace.

Remark 1. The approximation (6) can be transformed to
Vinfm (K ) Vi v = Vind (HmD — DH) Viv. (7)

This is used in the computations here. In SIRKP, (I —H,;,D,)H,,! is used
instead of V¥ AV, , which appears in the approximation (4). The matrices
H,, and D,, are available with no additional cost, and since m < n, the
computation of approximation (7) is numerically efficient.

In order to analyze the convergence of approximation (6), the space con-
structed by SIRKP is investigated. Let Xj := (y;I—A) ! forj=1,...,m.
Given y; = N —j, thus

Xj = ('Y)'I _A)_l = (I - (Vm _'Yj)Xm)_lxm - (I + (m_j)Xm)_lxm-
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The space generated by the m-step SIRKP is therefore

Span{v, X;v, ..., XV}
= Span{v, (I+ (Mm—1Xm) " XmVv, ..., (I+Xm) Xmv, Xmv}
- {T(Xm)v | TE :Pm—l/qm—l; Qm(X) - (1 + TTLX) e (1 +X)}-

The space generated up to the mth step of SIRKP is the rational Krylov
subspace generated by matrix X, . The following properties regarding the
approximation of SIRKP are derived from these observations and the result of
Beckermann and Reichel [1].

Proposition 2. Let qm(x) := (1 + mx)--- (1 +x) and P, be the set of
polynomials of degree less than or equal to m. For allv € Prn_1/qm—1, then

(X )v = Vinr (K ) Vi v. (8)
Proposition 3. There ezists T1n € Pm—1/qm-1 Ssuch that
Vinfm (K ) Vi v = 1 (X )v. 9)

Remark 4. The consequence of Proposition 2 is that the approximation of
the rational functions in P,_1/qm_1 of X, with SIRKP is exact. Moreover,
Proposition 3 implies that all the approximations of SIRKP are represented
by some rational function in Py —1/qm—1 of Xy, .

We therefore obtain the following theorem regarding the convergence of SIRKP.

Theorem 5. Let H(TT) be the set of holomorphic functions in the closed and
bounded set: TT C C to C. Let 1 < C < 11.08, and f(x) := fé eN—sx (] —
)1/ (k—1)lds fork =1, f(x) =eN">" fork =0. It is possible to choose
the closed and bounded set X containing U}\I:?W(Xj) and satisfying £ C C*.
With the L, form=1,...,N —1, the error bound of SIRKP is estimated as

[dw(A)Y = Vinfin (K ) Vvl < 2C[[vlle™™ x  min  [[f—7flz,  (10)
Te?mfl/mel

where || - ||z is the norm in H(L), which is defined as ||g||z = supyes 1g(X)]-
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Proof: Since W(A) € C~ and y; = N —j > 0, W(X;) € C* for all
j=1,...,N—=1. In addition, W(X;) are bounded. This makes it possible to
choose a closed and bounded set £ C C* which contains U}\':?W(Xj) :

Let r € Q,, be arbitrary. Then ¢ (A) = f,,.(X\n), and Proposition 2 yields
H¢k(AJV__\4nﬂn(KﬁJ\¢;VH
— Hfm(Xm)v - T(Xm)v - mem(Km)V:nV + VmT(Km)v;:lV”' (11)

Since all the poles of functions in P,_1/qm_1 are real and negative, then
Pm-1/qm-1 € H(X), and f,, f € H(EX). Moreover, from equation (5),
W(K;) € W(Xy) . Following Crouzeix [2], there is C € [1,11.08] such that

[fm (X ) =r(Xm) | < Cllfm—7llz,  [[fm(Kn) =r(Kn)[| < Cl[fm—7[[z. (12)

Let Qn = Pm_1/qm-1. Since ¢y is represented as ¢y (x) = fé es*(1 —
s)1/(k—1)lds for k > 1, and y; = N—j, it is deduced using (11) and (12)
that
< 2C|v|| min |[f — 7|2
TEQMm

= 2C||v|| min sup|p(N —m — z ) —1r(2)
reQ 5

mz¢

‘ Lsemez ) L= s
= 2C||v|| min sup J es(Nem==") 22 20 es(N=m)pms(N=m)p(7) g5

T€09m zex |Jo (k'_ 1)'
< 2C||v|| mi e ™ Jl eN—sz! (=9 ds Jl eNTsIN=M) qg1(z)
< min sup ———ds—

T€Qm zex 0 (k_ 1)' 0

1 K—1
o o -1(1—5)
= 2C||v|| min e ™ sup J e sz 1—ds—r(z) ,
for k > 1. The proof for k = 0 is similar. [

In the error bound (10), the term e ™ becomes smaller as m becomes larger.
In addition, choosing y; as N —j makes the space Pm_1/qm—1 expand with
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each iteration, since q, has the form q,(x) = (1+mx)--- (1+x) . Therefore,
we also have that min,cp, ,/q,. , [|f — ||z becomes smaller as m becomes
larger. A comparison of this to the upper bound of RKP |3, Theorem 4.16],
illustrates that the term e™™ accelerates the convergence of SIRKP.

Remark 6. It is uncertain in advance whether or not N > j for all j. However,
if j reaches N in the middle of the algorithm, it can be reset with a new
larger N. In equation (10), the function f is dependent on N. Thus, the
error may not decrease when N changes, but it will decrease from this point.
Moreover, when setting the maximum iteration number to m™*  setting
N = m™ + 1 ensures N > j for all j. In this case, the shifts of SIRKP are
completely determined.

4 Numerical experiments

All numerical computations in this section were done with C on an Intel(R)
Xeon(R) X5690 3.47GHz processor with the Ubuntul4.04LTS operating sys-
tem.

Example 7. Consider the wave equation on the rectangular region Q) =
(0,1) x (0,1) C R%:

(0'u c?Au = f(xq,%x2,t) in (0,T] x Q

—_— — = n

at2 1, A2, ) )

f(x1, %2, t) = —10" sin (t) el 08+ (=087

U= e—10(x1—0.5)2—10(><2—0.5)2 on {0} x Q, (13)
0

a—ltl —0 on{0)xQ,

ou

u=0 on (O,T] X th a =0 on (O,T] X aQQ,
\

where 0Q; = [0,1] x {0}|J[0,1] x {1}, 0Qs = 0Q \ 0Q;, and ¢ = V0.1.
In order to confirm the effectiveness of the exponential integrator (EI), this
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was compared with the equivalent results for the implicit Euler method (1E).
Choosing n = 1312, the solution was computed to t = 50. The solutions are
shown in Figure 1. Observe that IE with At = 0.01 dampens the solution. The
CPU time of EI with At = 0.1 was 9.4s, and that of IE with At = 1073 was
34.0s. Hence, the converged solution was computed by EI around four times
faster than by IE. In the next step, the effectiveness of SIRKP in computing
matrix ¢-functions was tested. A larger region and a finer mesh were set with
Q= (—1.5,1.5) x (—1,1), and n = 237378 . The matrix ¢, function and the
vector product which appeared in the exponential integrator were computed
up to a relative error tolerance of 107, The CPU time and the number of
iterations for computing the vector product to accuracy 10~% with the shift-
invert Arnoldi method (SIAP) [3|, RKP, and SIRKP are shown in Table 1. The
relative error of each algorithm as a function of iteration number are shown in
Figure 2. The shifts y; = r+h-(—=1)7*[(j —1)/2]i introduced by Gockler [3]
for RKP, were employed. In addition, we set m™** = 50 for SIRKP, and y;/At
was used instead of yj in order to treat M~1Li,; instead of AtM 'L, .
SIAP caused numerical instability or converged very slowly if the shift was not
appropriate. RKP used complex shifts even though the matrices M, Li,; and
vector v were real, which required additional computational cost. Moreover,
it failed to converge, due to instability in the computation of V} AV, in (4).
Alternative values of r and h were used, but the results did not change. On
the other hand, SIRKP converged at a similar rate to the optimal value for
SIAP. Since the shifts of SIRKP changes at every step, the impact of each
shift is balanced. This effect of SIRKP is explained due to the term e™™ in
equation (10).

5 Conclusion

Exponential integrators, which are used for the numerical solution of algebraic-
differential equations, require the efficient calculation of matrix ¢-functions.
The SIRKP method has been shown in this paper to be an efficient method to
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Figure 1: Numerical solutions of the problem (13) in Example 7, which is
computed to t =50 (a): with EI of At = 0.1 (b): with IE of At = 0.01 (c):
with IE of At =1073).

(a)

0.5

u(50,x)

u(50,x)

u(50,x)
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Table 1: CPU time and iterations of SIAP, RKP and SIRKP for the computation
of the matrix ¢;-function and the vector product in Example 7 up to a
relative error tolerance of 1075, (RKP with r = 20/At, h = 1.5/At and SIAP
with vy = 80/At caused numerical instability before the relative errors reached

1076

Algorithm Y; CPU time (s) Iterations
SIRKP (50 —j) /At 7.1 25
SIAP 10/At 51 51
SIAP 20/At 14 32
SIAP 40/At 6.4 25

Figure 2: Number of iterations versus relative errors for SIAP, RKP, and SIRKP
for the computation of the matrix ¢;-function and the vector product in
Example 7.

4

" B ‘ ‘ ‘ " SIRKP y=(50-j)/At —
¥ RKP =20, h=1.5 -
107} SIAP y=10/At =-veee |
SIAP y=20/At e
SIAP y=40/At

SIAP y=80/At /-~ |

Relative Error
o

\
10% ¢ AN

5 10 15 20 _25 30 35 40 45
Iterations
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calculate ¢-functions which determines the necessary real-valued shifts. The
main difference between this and the existing method of RKP, is its choice of
shifts and the way the approximation is made.
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