References
-
G Frobenius.
Uber Matrizen aus nicht negativen Elementen.
Akad Wiss, Berlin, 1912.
-
G. H. Golub and C. Greif.
An Arnoldi-type Algorithm for Computing PageRank, 2006.
http://www.cs.ubc.ca/ greif/Papers/gg2006BIT.pdf
-
G. H. Golub and C. F. Van Loan.
Matrix Computations.
John Hopkins University Press, Baltimore, 1996.
-
W. Ledermann.
Bounds for the greatest latent root of a positive matrix.
J. London Math Soc, 25:265--268, 1950.
-
M. Lu, H. Liu, and F. Tian.
A new upper bound for the Spectral Radius of graphs with girth at
least 5.
Lin Alg Appl, 414:512--516, 2006.
-
A. Ostrowski.
Bounds for the greatest latent root of a positive matrix.
J. London Math Soc, pages 253--256, 1952.
-
Y. Saad.
Variations of Arnoldi's Method for computing Eigenelements of
Large Unsymmetric Matrices.
Lin Alg. and its Applic, 34:269--295.
-
Y. Saad.
Numerical Methods for Large Eigenvalue Problems.
Manchester University Press, New York, 1992.
-
J. Snellman.
The Maximal Spectral Radius of a Digraph with $(m+1)^2-s$
Edges.
Elec J. of Linear Algebra, 10:179--189, 2003.
-
G. W. Stewart.
Introduction to Matrix Computations.
Academic Press, New York, 1973.
-
E. Andersson and P. Ekstrom.
Investigating Google's PageRank Algorithm.
Technical report, Uppsala University, 2004.
http://www.it.uu.se/edu/course/homepage/projektTDB/vt04/projekt5/website/report.pdf
-
G. W. Stewart.
Simultaneous Iteration for Computing Invariant Subspaces of
Non-Hermitian Matrices.
Numer. Math, pages 123--136, 1976.
-
G. W. Stewart.
Matrix Algorithms, volume 2: Eigensystems.
SIAM, 2001.
-
R. Varga.
Matrix Iterative Analysis.
Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1962.
-
R. J. Wood and M. J. O'Neill.
Using the spectral radius to determine whether a Leontief system
has a unique positive solution.
Asia Pacific Journal of Operational Research, Operational Research Society of Singapore, 19:233--247, 2002.
-
R. J. Wood and M. J. O'Neill.
An always convergent method for finding the spectral radius of an
irreducible non-negative matrix, 2004.
http://anziamj.austms.org.au/V45/CTAC2003/Wood
-
R. J. Wood and M. J. O'Neill.
A faster algorithm for identification of an M-Matrix, 2005.
http://anziamj.austms.org.au/V46/CTAC2004/Wood
-
W. E. Arnoldi.
The principle of minimized iterations in the solution of the matrix
eigenvalue problem.
Q. Appl. Maths, 9:17--29, 1951.
-
A. Brauer.
The theorems of Ledermann and Ostrowski on positive matrices.
Duke Math. J., 24:265--274, 1957.
-
L. Collatz.
Einschliessungenssatz fur die characteristischen Zahlen von
Matrizen.
Math Zeit, 48:221--6, 1942.