References

  • G Frobenius. Uber Matrizen aus nicht negativen Elementen. Akad Wiss, Berlin, 1912.
  • G. H. Golub and C. Greif. An Arnoldi-type Algorithm for Computing PageRank, 2006. http://www.cs.ubc.ca/ greif/Papers/gg2006BIT.pdf
  • G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, 1996.
  • W. Ledermann. Bounds for the greatest latent root of a positive matrix. J. London Math Soc, 25:265--268, 1950.
  • M. Lu, H. Liu, and F. Tian. A new upper bound for the Spectral Radius of graphs with girth at least 5. Lin Alg Appl, 414:512--516, 2006.
  • A. Ostrowski. Bounds for the greatest latent root of a positive matrix. J. London Math Soc, pages 253--256, 1952.
  • Y. Saad. Variations of Arnoldi's Method for computing Eigenelements of Large Unsymmetric Matrices. Lin Alg. and its Applic, 34:269--295.
  • Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, New York, 1992.
  • J. Snellman. The Maximal Spectral Radius of a Digraph with $(m+1)^2-s$ Edges. Elec J. of Linear Algebra, 10:179--189, 2003.
  • G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
  • E. Andersson and P. Ekstrom. Investigating Google's PageRank Algorithm. Technical report, Uppsala University, 2004. http://www.it.uu.se/edu/course/homepage/projektTDB/vt04/projekt5/website/report.pdf
  • G. W. Stewart. Simultaneous Iteration for Computing Invariant Subspaces of Non-Hermitian Matrices. Numer. Math, pages 123--136, 1976.
  • G. W. Stewart. Matrix Algorithms, volume 2: Eigensystems. SIAM, 2001.
  • R. Varga. Matrix Iterative Analysis. Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1962.
  • R. J. Wood and M. J. O'Neill. Using the spectral radius to determine whether a Leontief system has a unique positive solution. Asia Pacific Journal of Operational Research, Operational Research Society of Singapore, 19:233--247, 2002.
  • R. J. Wood and M. J. O'Neill. An always convergent method for finding the spectral radius of an irreducible non-negative matrix, 2004. http://anziamj.austms.org.au/V45/CTAC2003/Wood
  • R. J. Wood and M. J. O'Neill. A faster algorithm for identification of an M-Matrix, 2005. http://anziamj.austms.org.au/V46/CTAC2004/Wood
  • W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Maths, 9:17--29, 1951.
  • A. Brauer. The theorems of Ledermann and Ostrowski on positive matrices. Duke Math. J., 24:265--274, 1957.
  • L. Collatz. Einschliessungenssatz fur die characteristischen Zahlen von Matrizen. Math Zeit, 48:221--6, 1942.




Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.