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Finding the spectral radius of a large sparse
non-negative matrix
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Abstract

A comparison of methods for finding the spectral radius of a large
sparse non-negative matrix. The Arnoldi method is compared with a
variation of the method of Collatz [Math Zeit, 48, 221–6, 1948], this
method of Collatz being always convergent when finding the spectral
radius of a non-negative matrix. The advantages and disadvantages of
both methods are discussed, as well as a comparison with the methods
of orthogonal iteration and simultaneous iteration. Comparisons are
made using flop counts.
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1 Introduction

A non-negative matrix is a matrix in which all the elements are non-negative.
Computation of the spectral radius of a non-negative matrix is important in
showing the uniqueness of solution of a linear system which arises in Input-
Output Analysis, a branch of Mathematical Economics [18]. It can also prove
useful in the identification of an M-matrix [20]. Furthermore, computation
of the eigenvalues and eigenvectors of a non-negative matrix is important in
areas such as genetics, age-specific population growth and harvesting animal
populations and in determining page rank for web pages on the Internet.
The Power method for finding the dominant eigenvector of a matrix is used
by Google in determining the page rank of a web page [1, 6]. Calculating
the spectral radius of a matrix is also important in graph theory [9, 13].
The accepted method for finding all the eigenvalues of a full matrix is the
QR method. However, if it is desired to find just the dominant eigenvalue
of a large sparse, non-negative matrix there is an element of overkill in us-
ing the QR method. Furthermore, the requirement of the QR method that
the subject matrix must first be converted to Hessenberg form, which is an
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O(n3) operation, may be prohibitively expensive and also will very likely
destroy the sparsity of that matrix. A more promising approach is to use a
method which calculates only the dominant, or the first few largest eigen-
values of the matrix, and a method which at the same time preserves the
sparsity.

One such approach is to use an invariant sub-space method such as that
of Arnoldi [2], Saad [12] and Stewart [16]. Saad [11] showed that the method
could be used as a projection method to solve large eigenproblems and pro-
vided a number of variations of the method. Later more sophisticated ver-
sions of the method have been developed. Another approach is to develop
further a result of Collatz [4] for bounding the spectral radius of an irre-
ducible non-negative matrix. Various researchers contributed to the prob-
lem of bounding the spectral radius; among these are Frobenius [5], Led-
ermann [8], Ostrowski [10], and Brauer [3]. Wood and O’Neill [19] showed
that the result of Collatz could be extended to provide converging bounds
of uncertainty for the spectral radius of an irreducible non-negative matrix.
Both of these methods will be discussed and a further comparison made with
the methods of Orthogonal Iteration and Simultaneous Iteration.

2 An always convergent method

In 1942 Collatz [4] proved the equivalent of the following result.

Theorem 1 Let A ≥ 0 be an n×n irreducible matrix and q0 be an arbitrary
positive n-dimensional vector. Defining qν = Aqν−1 = · · · = Aνq0 , ν ≥ 1 , let

λν = min
1≤i≤n

(
q
(i)
ν+1

q
(i)
ν

)
and λν = max

1≤i≤n

(
q
(i)
ν+1

q
(i)
ν

)
,
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where the superscript i represents the ith component of a vector. Then, de-
noting the spectral radius of A by ρ(A) ,

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ ρ(A) ≤ · · · ≤ λ2 ≤ λ1 ≤ λ0 .

Furthermore, if it is known that the matrix A is primitive then the following
may be deduced.

Theorem 2 In Theorem 1 both the sequences {λν}
∞
ν=0 and

{
λν
}∞
ν=0

con-
verge to ρ(A), from an arbitrary initial positive vector q0, if and only if the
irreducible matrix A ≥ 0 is primitive [19].

A matrix A is irreducible if and only if its directed graph G(A) is strongly
connected. An irreducible matrix is primitive if it has only one eigenvalue of
modulus ρ(A) [17].

Thus when matrix A is primitive, the interval of uncertainty
(
λν , λν

)
must

eventually be reducing and converge to the spectral radius of A. That is,
when A is primitive, the method of Collatz is an always convergent method.

The further restriction that the matrix A be primitive and not just irre-
ducible does not present any practical difficulties, for the following reason:
An irreducible matrix is either primitive or cyclic, and, if cyclic there must
exist a permutation matrix P such that PAP T has diagonal submatrices
which are null and square [17, page 38]. If then an irreducible matrix A
presents with diagonal elements which are entirely zero, a simple diagonal
shift qI, where q > 0 and I is the identity matrix, will ensure that the matrix
A + qI is primitive and the spectral radius of this changed matrix is easily
converted to the spectral radius of A. The issue of this shift is discussed by
Wood and O’Neill [19].
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Convergence of the method of Collatz can sometimes be very slow but a
way to overcome this and accelerate convergence is to use a variant of the
Inverse Power Method. The following theorem guarantees that, if q is chosen
appropriately, (qI − A)−1 is non-negative and primitive.

Theorem 3 If A ≥ 0 is an n×n irreducible matrix with ρ(A) < q , then (qI−
A)−1 is a non-negative irreducible matrix. Furthermore, it is primitive [19].

The convergence rate when the method of Collatz is applied to the matrix A
is |λ2/λ1| where λ1 and λ2 are the dominant and sub-dominant eigenvalues
respectively. When the method of Collatz is applied to the matrix (qI−A)−1

the convergence rate is |(q − λ1)/(q − λ2)| , and if q is chosen sufficiently close
to λ1, this will be a superior rate.

A commonly used set of test matrices developed by Stewart for large,
sparse matrix computation is a set of transition matrices for a particular
Markov chain consisting of a random walk on a (k+1)×(k+1) triangular grid.
These matrices are usually denoted Mark(k), and are described more fully
by Saad [12]. Mark(25) has dimension n = 351 and contains 123201 non-zero
elements. From the definition of the Mark matrices it is easily shown that
they are irreducible. However, they are also cyclic; so to ensure primitivity
the method of Collatz has been applied to the matrix Mark(25) + I351 . See
Table 1 for results.

The Mark matrices are row stochastic and thus have a dominant eigen-
value of one. Consequently Mark(25) + I351 will have a dominant eigenvalue
of two. When the method of Collatz for this matrix was implemented using
Matlab it was found that, with a randomly generated initial vector q0, the
number of flops to achieve four decimal places of accuracy in the dominant
eigenvalue was 216, 216 flops and 54 matrix-vector multiplications. The con-
vergence criterion used was two successive values ρest agreeing to four decimal
places of accuracy.
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Table 1: Collatz bounds for Mark(25) + I351

ν λν λν ρest = (λν + λν)/2 Approx error
1 1.0704 146.3969 73.7336 71.7336
2 1.3747 5.8263 3.6005 1.6005
3 1.4351 3.0207 2.2279 0.2279
...

...
...

...
...

53 1.9937 2.0062 2.0000 0.0000
54 1.9937 2.0062 2.0000 0.0000

3 The Arnoldi method

The procedure introduced by Arnoldi [2], begins by building an orthogonal
basis {v1, v2, . . . , vm} for the Krylov subspace Km, where

Km = span{v1, Av1, . . . , A
m−1v1}

and v1 is an arbitrarily chosen vector of norm one. The vectors in this basis
then form the successive columns of the matrix Vm as shown in Figure ??,
the so-called Arnoldi factorisation, where Hm is an m×m upper Hessenberg
matrix and E = wme

H
m is a rank one matrix. See Saad [12] for further details.

For m sufficiently large the eigenvalues of Hm provide approximations to a set
of the eigenvalues of A. The basic Arnoldi algorithm was applied to the test
matrix Mark(25), with the results shown in Table 2. An estimate of the error

at each step was calculated using ‖(A− λ(m)
i I)u

(m)
i ‖2 = hm+1,m|eHmy

(m)
i | where

u
(m)
i is the Ritz approximate eigenvector for λ

(m)
i and y

(m)
i is an eigenvector

of Hm associated with the eigenvalue λ
(m)
i .

The total number of flops required to guarantee the dominant eigenvalue
correct to four decimal places of accuracy was 4.08 × 106 and 120 matrix-
vector multiplications. The convergence criterion used in this example was
two successive values of ρ(A) approx agreeing to four decimal places of ac-
curacy. We acknowledge that, since both Arnoldi and the method of Collatz
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AVm = VmHm + wme
H
m

Figure 1: Arnoldi factorisation

were started with a random initial positive vector, the number of flops may
vary depending on how close that initial vector is to the dominant eigenvec-
tor. To remove this effect, Arnoldi and the method of Collatz were repeated
100 times with different random initial vectors and the average number of
flops calculated for each. The result was that, for Arnoldi, Mark(25) aver-
aged 2.4×106 flops and, for Mark(25)+I351 , the method of Collatz averaged
1.1×105 flops. A further alternative method to find the dominant eigenvalue
is to use the Matlab function eigs, which is an implementation of the Implic-
itly Restarted Arnoldi algorithm. When eigs was repeated 100 times for the
matrix Mark(25) the average number of flops required to achieve four deci-
mal accuracy in the dominant eigenvalue was approximately 3.54× 107 flops
(1.4×107 flops for Mark(25) + I351). A further difficulty here was that some-
times eigs for Mark(25) converged to the eigenvalue −1 instead of 1. Also,
when the QR method (applied using the Matlab function eig) was applied
to Mark(25) in order to calculate all eigenvalues, the number of flops needed
was approximately 4.2× 108 (4.0× 108 flops for Mark(25) + I351).
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Table 2: Arnoldi method applied to A = Mark(25)
m flops ρ(A) approx. Error
30 773100 0.9998 0.000759
40 1311600 1.0000 0.00005
50 1990500 1.0000 4.23× 10−7

Table 3: Orthogonal and simultaneous iteration applied to A = Mark(25)+
I351

Method Total no. of flops Approx error in ρ(A)
Orthogonal 6.2× 106 < 10−4

Simultaneous 2× 106 < 10−4

4 Other methods

Other methods which are useful for large, sparse matrices are the methods
of Orthogonal Iteration and Simultaneous Iteration. Orthogonal Iteration
begins with an initial n× r matrix Q0, with orthonormal columns and gen-
erates Z1 = AQ0 . The QR factorization of Z1, viz Z1 = Q1R1, produces the
next Q matrix, and the process is repeated to generate Q2, R2, Q3, R3, etc.
Under certain conditions for convergence the diagonal entries of the Rk ma-
trix will eventually approximate the r largest eigenvalues of A. Golub and
VanLoan [7] gave details of the method in page 332 ff.

The method of Orthogonal Iteration can sometimes be very slow. Ac-
cordingly, the method of Simultaneous Iteration is designed to accelerate the
convergence of Orthogonal Iteration by periodically performing a Schur de-
composition. Stewart [15] described the technique. The two methods with
r = 1 were applied to Mark(25) + I351 . The results to achieve four decimal
accuracy are shown in Table 3.

Larger values of r were tested, but these larger values of r resulted in
the total number of flops increasing by a significant amount. Hence, if we
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are only concerned with the dominant eigenvalue, increasing r is expensive
in terms of the number of flops. The convergence criterion used in the above
example was two successive values of ρ(A) approximately agreeing to four
decimal places of accuracy.

5 Comparison of the methods

For the test matrix Mark(25) + I351 the method of Collatz recorded fewer
flops than the Arnoldi method, eigs and eig for Mark(25) when finding the
dominant eigenvalue. We acknowledge that the method of Arnoldi, and the
Matlab routine eig, also provide some or all of the subdominant eigenvalues,
and so more information than just the dominant eigenvalue. However, if the
sole aim is to find the dominant eigenvalue of a non-negative matrix, then
the method of Collatz would appear to be superior in terms of the number
of flops.

For Mark(25)+I351 , the methods of Orthogonal Iteration and Simultane-
ous Iteration require the order of 10 more flops than the method of Collatz.
Furthermore for the method of Collatz the convergence criterion involving
upper and lower bounds guarantees convergence. There are conditions under
which Orthogonal Iteration can be guaranteed to converge to the dominant
eigenvalue, but these are not easily verifiable a priori. For Simultaneous Itera-
tion the condition |λr| > |λr+1| does guarantee convergence for an irreducible
matrix [15].

Because of its close relationship to the Power method, Arnoldi will typ-
ically generate a set of m eigenvalues among which will be the dominant
eigenvalue, although convergence to this dominant eigenvalue is not guaran-
teed. A further matter of uncertainty with Arnoldi is the choice of m, the di-
mension of the Krylov subspace to be used. Choosing m = 10, 11, 12, . . . , 21
was not effective for Mark(14), as Table 4 shows.
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Table 4: Arnoldi applied to A = Mark(14)
m flops ρ(A) approx.
10 39640 0.9997
11 46244 0.9965
...

...
...

20 127280 1.0001
21 138684 1.0001

In this case, premature convergence to the wrong value 1.0001 occurred,
and to achieve four decimal accuracy many more flops were required than
m = 30, 40, 50, . . . .

6 Practicalities for the method of Collatz

To ensure irreducibility of any non-negative matrix A, a slight perturbation
of A will suffice. A suggested perturbation is the matrix

E =


0 ε 0 · · · 0

0 0
. . . . . .

...
...

...
. . . ε 0

0 0 · · · 0 ε
ε 0 · · · 0 0

 (1)

where ε is a suitable small positive quantity. Then ‖E‖2 = ε and A+E will
be irreducible. Furthermore, if all the diagonal elements of the resulting ma-
trix are zero, a diagonal shift with the identity matrix will ensure that we are
not dealing with a cyclic matrix, and that primitivity is assured. A relevant
concern when perturbing the elements of A by a small amount is its effect on
the eigenvalues. If the matrix has an ill-conditioned dominant eigenvalue, a
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small perturbation may result in a very inaccurate largest eigenvalue. How-
ever, a result from Stewart [14] helpfully determines the impact of a small
perturbation: if λ is a simple eigenvalue of the matrix A with corresponding
right eigenvector x and left eigenvector y, with ‖x‖2 = 1 and yTx = 1 , and
A is deflated using an orthogonal matrix R such that

RTAR =

[
λ hT

0 C

]
,

then |λ− λ′| ≤ ε ‖y‖2 + ε2/δ + ηO(ε2) , where λ′ is the corresponding eigen-

value of the perturbed matrix A + E. Also, ε = ‖E‖2 , δ = ‖(λI − C)−1‖−1
2

and η = ‖h‖2 . So the numbers ‖y‖2, δ and η give a measure of the con-
dition of the simple eigenvalue λ. Numerical experiments were carried out
with 100 randomly generated sparse non-negative matrices for each of the
orders 100, 200, 300 and 400. Sparsity density was randomly selected in the
range (0, 0.5). In all but a very few exceptional cases, ‖y‖2 was less than 10,
δ was greater than 0.1 and η less than 10, indicating that typically, the dom-
inant eigenvalue of a non-negative matrix is not greatly affected if the values
in E are appropriately small. The few exceptional cases occurred when the
sparsity density was very low—less than 2%. So for matrices where sparsity is
of such an order it would be wise to convert the matrix to normal form, which
is block upper-triangular with the square diagonal blocks being irreducible
matrices or null matrices. The method of Collatz may then be applied to
those irreducible blocks. Varga [17] details the conversion to normal form. In
cases where the method of Collatz produces very slow convergence a superior
rate of convergence can usually be achieved by a hybrid method consisting
of several steps of the method of Collatz applied to the matrix A, followed
by the method of Collatz applied to the matrix (qI −A)−1 with q chosen as
the upper bound for the dominant eigenvalue calculated after several steps
of the method of Collatz for A. Theorem 3 guarantees that (qI − A)−1 is
non-negative and primitive in this situation. When the Hybrid method was
applied to Mark(25) + I351 , the method converged in 3.8 × 105 flops, which
is of the same order as Collatz. In order to investigate performance of the
methods for sparse matrices which are larger, Mark(50) and Mark(100) were
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Table 5: Mark(50), dimensions 1326× 1326.
Method Total no. of flops
Collatz 2.6× 106

Hybrid 5.3× 106

Arnoldi 15.0× 106

Orthogonal 5.7× 106

Simultaneous 5.6× 106

Table 6: Mark(100), dimensions 5151× 5151.
Method Total no. of flops
Collatz 1.2× 107

Hybrid 6.5× 107

Arnoldi 13.0× 107

Orthogonal 4.4× 107

Simultaneous 4.2× 107

chosen and the results recorded in Tables 5 and 6.

For very large matrices the Hybrid method starts to lose its computational
advantage, since it involves the solution of a large system of linear equations.
Again the convergence criterion used in these examples was two successive
values of ρ(A) approximately agreeing to four decimal places of accuracy.

7 Conclusion

This article presents an always convergent method, the method of Collatz,
for finding the spectral radius of a non-negative, irreducible matrix. It is a
method closely related to the Power Method but makes use of a result by
Collatz. The method has an advantage over the other methods presented in
this article, viz Arnoldi, Orthogonal Iteration, and Simultaneous Iteration,
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in that it bounds the dominant eigenvalue. For large, sparse matrices the
number of flops is either of lower order or of a comparable order with the
other methods. If the convergence of the method of Collatz is slow for A, the
method can be applied to (qI − A)−1 and this has superior convergence if
q is chosen appropriately and sufficiently close to λ1, the dominant eigenvalue
of A. Thus the method can be restarted in the case of very slow convergence,
via the so-called Hybrid method. The method of Collatz and the Hybrid
method also have an advantage over the Arnoldi method in that Arnoldi
requires the initial size of the Krylov space to be predetermined. A variation
of Arnoldi allows for the adaptive choice of the sub-space size, but we did not
investigate this option. A poor choice of the initial sub-space dimension can
affect performance of the Arnoldi method, in that more flops are needed, and
in some cases this leads to premature convergence to the wrong value. The
method of Collatz and the Hybrid method do not suffer from this difficulty.
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