
ANZIAM J. 58 (CTAC2016) pp.C69–C81, 2017 C69

A parallel approach to bi-objective integer
programming

W. Pettersson1 M. Ozlen2

Received 23 January 2017; revised 5 October 2017

Abstract

The real world applications of optimisation algorithms often are only
interested in the running time of an algorithm, which can frequently be
significantly reduced through parallelisation. We present two methods
of parallelising the recursive algorithm presented by Ozlen, Burton and
MacRae [J. Optimization Theory and Applications ; 160:470–482, 2014].
Both new methods utilise two threads and improve running times. One
of the new methods, the Meeting algorithm, halves running time to
achieve near-perfect parallelisation, allowing users to solve bi-objective
integer problems with more variables.

doi:10.21914/anziamj.v58i0.11724, c© Austral. Mathematical Soc. 2017. Published
2017-10-13, as part of the Proceedings of the 18th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article. Record comments on this article via
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/comment/add/11724/0

https://doi.org/10.21914/anziamj.v58i0.11724
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/comment/add/11724/0

Contents C70

Contents
1 Introduction C70

2 Background C72

3 The algorithm of Ozlen, Burton and MacRae C74

4 Parallelisation C75
4.1 Range splitting . C75
4.2 Efficient parallelisation . C75

5 Implementations and running times C78
5.1 Implementation . C78

6 Conclusion C79

References C80

1 Introduction

Integer programming (ip) requires either one single measurable objective, or a
pre-existing and known mathematical relationship between multiple objectives.
If such a relationship, often called a ‘utility function’, is known then one can
optimise this utility function [1, 6]. However, if the utility function is unknown,
we must instead identify the complete set of nondominated solutions for the
Bi-Objective Integer Programming (boip) problem. A decision maker can
then more easily see the trade-offs between different options, and therefore
make a well informed decision.

Algorithms that determine this complete set can take exact approaches [2], or
utilise other techniques (including evolutionary techniques [9]) to approximate

1 Introduction C71

the solution. For further details on multi-objective optimisation see the book
by Ehrgott [5].

The performance of boip algorithms, and algorithms in general, is often based
on the computational time taken to find the solution. This allows algorithms to
be compared without needing to use expensive or speciality hardware (as long
as comparisons are made on identical hardware setups), but does not take into
account real world computing scenarios. Modern computing hardware usually
includes multiple cores allowing several threads to run simultaneously. Given
this, we consider how to best utilise parallel processing in boip algorithms.
We constrain ourselves to bi-objective problems to demonstrate the feasibility
of our approach.

Existing parallel algorithms in exact bi-objective integer optimisation algo-
rithms partition the solution space based on heuristics or meta-calculations,
and then iteratively find solutions inside each partition [3, 4, 10]. In this
paper we look at a boip algorithm from Ozlen, Burton and MacRae [7]
which calculates a solution by recursively solving constrained lexicographic ip
problems. We parallelise this by considering different lexicographic orderings
simultaneously. Our new parallel algorithm achieves near-ideal parallelisa-
tion, calculating a solution in half the running time without incurring any
additional computational time. Comparisons with other algorithms show that
this is an effective technique across problems of all sizes.

Section 2 of this paper gives a background in optimisation. A brief outline of
the recursive algorithm we build upon is given in Section 3. Section 4 describes
our parallel computing approach. Section 5 details our software implementa-
tion and gives running time comparisons between the original algorithm, the
original algorithm with cplex parallelisation, and our parallelisations.

2 Background C72

2 Background

In an ip problem, we are given a set of variables and a set of linear inequalities
called constraints. An assignment of an integer value to each variable is called
feasible if it satisfies all constraints, and an assignment which does not satisfy
all constraints is called infeasible. The set of all feasible vectors we will call
the feasible set, and can be defined as follows.

Definition 1. The feasible set of an ip problem is given by

X = {x ∈ Zn|Ax = b, xj > 0 for j ∈ {0, 1, . . . ,n− 1}}

where A is an n-by-n matrix and b is an n-by-1 matrix that together represent
the linear constraints of the problem.

Inequalities can be converted to equalities with the introduction of slack
variables (see the book by Papadimitriou and Steiglitz [8] or any introductory
linear programming text).

Given a feasible set X and an objective function f, the goal of an ip problem
is to find the solution x ∈ X that optimises f(x). In this paper we assume
that all objective functions are to be minimised. In some scenarios the goal
is to maximise a given objective function. Such a problem can trivially be
converted into an equivalent problem where the objective is to be minimised.
We will denote an ip problem (and various derived problems) as P.

In a multi-objective integer programming problem (moip) we do not have
a single objective function but rather a set of objective functions. The goal
then is to determine all nondominated (or Pareto optimal) solutions.

Definition 2. Given a pair f1, f2 of objective functions fi : X→ R, a solution
x ∈ X is considered nondominated (or Pareto optimal) if there does not exist
an x′ ∈ X with x′ 6= x such that fi(x′) 6 fi(x) for all i ∈ {1, 2}.

A bi-objective integer programming problem then involves the calculation of
the set of all nondominated feasible solutions.

2 Background C73

Given a set of objective functions, one of the simpler methods of generating a
related single-objective ip problem is to apply an ordering to the objective
functions, and compare solution vectors by considering each objective in order.
That is, each objective function is considered in turn, with objective functions
that appear earlier in the ordering being given a high priority. We will
call such a problem a lexicographic bi-objective integer programming (lboip)
problem on k objectives.

Our parallel algorithm will use different orderings of a set of objective functions
to determine the solution set. We therefore introduce the following notation
to refer to different lexicographic variants of a boip problem with a given set
of objectives.
Notation 3. If a lexicographic version of the boip problem P will order
objectives according to the ordered set (f1, f2), we will write P(1,2).

The optimal solution for a lboip problem will be part of the solution set
for the related boip problem, but there is no guarantee that it will be
the only solution for the boip problem. Indeed, it will often not be the
only nondominated solution. To determine all nondominated solutions, the
algorithm described in Section 3 utilises constrained lexicographic multi bi-
objective linear programming (clboip). A clboip problem is simply a lboip
problem with a constraint on the second objective function. These constraints
limit the solution space to some given bound.
Notation 4. Given an lboip problem Ps, if the upper bound on the second
objective is lk we will denote the clboip problem by Ps(< lk).
Example 5. Given a boip problem P with objective functions f1 and f2, the
clboip problem P(1,2)(< 15) is then the problem

Minimise f2(x)
s.t f1(x) = min{f1(x)|x ∈ X and f2(x) < 15}

and f2(x) < 15

whereas the clboip problem P(2,1)(< 18) is the problem

3 The algorithm of Ozlen, Burton and MacRae C74

Minimise f1(x)
s.t f2(x) = min{f2(x)|x ∈ X and f1(x) < 18}

and f1(x) < 18 .

3 The algorithm of Ozlen, Burton and
MacRae

The full recursive algorithm given by Ozlen, Burton and MacRae [7] is suitable
for problems with an arbitrary number of objective functions. Algorithm 1
describes a bi-objective version of the algorithm. For a complete introduction
to the algorithm, see [7].

The correctness of this algorithm is readily shown by induction. For a formal
proof of the correctness of this algorithm, see [7].

Algorithm 1: A simple overview of the bi-objective version of the algorithm
of Ozlen, Burton and MacRae.

Data: A boip P with objective functions f1 and f2
Result: The nondominated solutions to the boip
Let S = {} be an empty set to which we will add all nondominated solutions;
Let l2 = ∞;
while P(1,2)(< l2) is feasible do

Let v = (v1, v2) be the optimal vector for the clboip
problemP(1,2)(< l2);

Add v to S;
Set l2 = v2;

end

4 Parallelisation C75

4 Parallelisation

We utilise parallelisation to reduce the elapsed running time of optimisation
algorithms. Here the term thread denotes a single computational core per-
forming a sequence of calculations. In a parallel algorithm, multiple threads
perform multiple calculations simultaneously. In this paper we investigate
improvements gained by utilising two threads.

4.1 Range splitting

When solving P, it is clear that the maximum and minimum values of f2(x)
can easily be determined by minimising f1 and f2 respectively. One naïve
method of distributing this problem across t threads would be to split this
range into t equal sized pieces, and then adding an upper and lower limits on
f2 to the specific sub-problem solved by each thread. These results can be
combined in the obvious manner to give the solution. We will refer to this
algorithm as the Splitting algorithm, as the range of f2 is split up so that
each thread gets a single section. The proof of correctness of this algorithm
is trivial. Implementation and timing results are detailed in Section 5.

4.2 Efficient parallelisation

Whilst Algorithm 2 is parallel, there is no guarantee that all threads will
perform an equal (or near-equal) amount of work. Indeed, it is easy to
visualise problems where one thread will perform far more work than another.
Instead we use an algorithm which dynamically adapts itself as the solution
set is found.

Recall that in Algorithm 1 we used the specific ordering P(1,2). We could
also solve P(2,1) and obtain the same result. This idea forms the basis of our
work. We show below how the bound l2 obtained from P(1,2)(< l2) is able

4 Parallelisation C76

Algorithm 2: Our range-splitting algorithm, utilising the moip algorithm
from [7].

Data: A boip problem P with objective functions f1 and f2, and T

representing the number of threads to use
Result: The nondominated solutions to the boip
Calculate u = min{f1(x)|x ∈ X} and l = min{f2(x)|x ∈ X};
Let step = (u− l)/2;
foreach t ∈ {1, . . . , T } do

Let LB = l+ (t− 1) ∗ step and UB = l+ t ∗ step;
Create P ′ as a copy of P;
Add constraints f2(x) < UB and f2(x) > LB to P ′;
Solve P ′ in a new thread using the algorithm of [7] in a separate thread;

end
return The union of all solutions returned by all threads.

to be shared with the problem P(2,1)(< l1). This allows the two problems to
be solved simultaneously, which almost halves the running time of our new
algorithm when compared with the original.

Theorem 6. If we have the complete set S of nondominated solutions for
P(1,2) with x2 > k, the complete set S ′ of nondominated solutions for P(2,1)

with x1 > l, and we also have the nondominated solution (l,k), then the union
S
⋃
S ′⋃ {(l,k)} is the complete set of nondominated solutions to P.

Proof: Assume that v = (v1, v2) is a nondominated solution to P that is
not in either S nor S ′. If x1 > l then v ∈ S ′, a contradiction. Similarly, if
v2 > k then v ∈ S which is also a contradiction. Therefore v1 6 l and v2 6 k,
but then as (l,k) is nondominated, the only solution is (v1, v2) = (l,k). ♠

The clboip problems P(1,2) and P(2,1) can be solved independently by Al-
gorithm 1, and (l,k) will be found as a solution to these problems. Given

4 Parallelisation C77

Algorithm 3: Our Meeting algorithm, which is a parallel version of the
algorithm from [7]. In the line marked *, the value lt ′ is shared between the
two threads.

Data: A boip problem P with objective functions f1 and f2
Result: The nondominated solutions to P

Let t ∈ {1, 2}, and let t ′ be the unique value in {1, 2} \ {t};
Let s1 = (2, 1) and s2 = (1, 2);
Let S1 = S2 = {} be empty sets;
Let l1 = l2 = ∞;
foreach thread t do

while Pst(< lt) is feasible do
Let v = (v1, v2) be the solution for the clboip problem Pst(< lt);
Add v to St;
Set lt = vt;
Add vt ′ < lt ′ as a constraint to Pst(< lt) *;

end
end
return S1 ∪ S2

this result, we propose the parallel algorithm, Algorithm 3, for computing
the solution to boip problems.

We refer to this algorithm as the Meeting algorithm, as the two threads meet
in the middle to complete the calculations. The correctness of the Meeting
algorithm follows from Theorem 6 and the correctness of Algorithm 1.

5 Implementations and running times C78

5 Implementations and running times

5.1 Implementation

Our algorithms were implemented in C++, and are available at https:
//github.com/WPettersson/moip_aira. All calculations were run on the
NCI supercomputing cluster Raijin, on nodes consisting of two Intel Sandy
Bridge E5 2670 processors and 32GB of ram. Code was compiled with gcc
4.9, using no special optimisation controls beyond -O2. We compared the
elapsed running time (and not cpu time) of the original algorithm (with
both one thread allocated to cplex, and two threads allocated to cplex),
along with the Splitting algorithm and the Meeting algorithm. These tests
utilised assignment and knapsack problems to give a broad overview of the
performance of our algorithms. These running times are summarised in
Table 1.

Allocating a second thread to cplex reduced running times slightly, with
an average reduction to 95% of the running time of the original algorithm
of Ozlen, Burton and MacRae [7]. It is not surprising that cplex does not
parallelise efficiently in this manner, as cplex cannot take advantage of
the full details of the algorithm used. The Splitting algorithm was more
impressive, showing an average reduction to 76% of the original running time.

Our Meeting algorithm is the clear outlier, running twice as fast as the original
algorithm of Ozlen, Burton and MacRae [7] on all problems tested. We expect
similar performance increases on all problem types. On some problems our
Meeting algorithm was more than twice as fast as the original algorithm. This
occurs when a given solution can be found faster by first minimising f2 and
then f1, rather than first minimising f1 and then f2. This behaviour seemed
to be more common in the knapsack problems.

https://github.com/WPettersson/moip_aira
https://github.com/WPettersson/moip_aira

6 Conclusion C79

Table 1: Elapsed running timing comparisons of the four algorithms. We ran
ten different random versions of each sized problem and averaged the results.

Assignment problems
tasks Ozlen et al. cplex Splitting Meeting

40 1.1× 101 1.1× 101 9.1× 100 5.7× 100

60 3.4× 101 3.2× 101 2.9× 101 1.8× 101

80 6.8× 101 5.8× 101 5.6× 101 3.6× 101

100 1.2× 102 1.1× 102 9.6× 101 6.3× 101

200 5.2× 102 4.5× 102 4.0× 102 2.8× 102

500 3.3× 103 3.5× 103 2.3× 103 1.7× 103

Knapsack problems
items Ozlen et al. cplex Splitting Meeting

50 1.0× 100 1.1× 100 6.7× 10−1 5.3× 10−1

100 5.0× 101 4.8× 101 3.6× 100 2.6× 100

200 2.2× 101 2.1× 101 1.6× 101 1.2× 101

400 7.4× 101 7.2× 101 5.8× 101 3.6× 101

1000 3.4× 102 3.5× 102 2.6× 102 1.5× 102

2000 1.2× 103 1.1× 103 9.1× 102 5.3× 102

6 Conclusion

We successfully implemented two parallel algorithms to solve bi-objective
optimisation problems. Both improved performance, with one showing ideal
performance increase. For bi-objective problems (and potentially multi-
objective problems) this faster algorithm allows solutions to be found in half
the time. Ongoing work in this field will look at various ways of utilising
more threads in parallel to further improve running times for ip problems
with three or more objectives. This could utilise elements from the symmetric
group Sn (where n > 2) to allocate the different orderings of the objective
functions to various threads, but this will make the sharing of information

References C80

more complicated and care must be taken to ensure that any new algorithm
does exactly determine all nondominated solutions.

Acknowledgements This study is supported by the Australian Research
Council under the Discovery Projects funding scheme (project DP140104246).

References

[1] M. Abbas and D. Chaabane. Optimizing a linear function over an
integer efficient set. European Journal of Operational Research,
174:1140–1161, 2006. doi:10.1016/j.ejor.2005.02.072 C70

[2] H. P. Benson. An outer approximation algorithm for generating all
efficient extreme points in the outcome set of a multiple objective linear
programming problem. Journal of Global Optimization, 13:1–24, 1998.
doi:10.1023/A:1008215702611 C70

[3] N. Boland, H. Charkhgard and M. Savelsbergh. The triangle splitting
method for biobjective mixed integer programming. In J. Lee and
J. Vygen editors Integer Programming and Combinatorial Optimization
2014, Lecture Notes in Computer Science, 8494. Springer, Cham, 2014,
pp. 162–173. doi:10.1007/978-3-319-07557-0_14 C71

[4] C. Dhaenens, J. Lemesre and E. G. Talbi. K-PPM: A new exact method
to solve multi-objective combinatorial optimization problems. European
Journal of Operational Research, 200:45–53, 2010.
doi:10.1016/j.ejor.2008.12.034 C71

[5] M. Ehrgott. Multicriteria Optimization, Lecture notes in economics and
mathematical systems, Springer, 2005. doi:10.1007/3-540-27659-9 C71

https://doi.org/10.1016/j.ejor.2005.02.072
https://doi.org/10.1023/A:1008215702611
https://doi.org/10.1007/978-3-319-07557-0_14
https://doi.org/10.1016/j.ejor.2008.12.034
https://doi.org/10.1007/3-540-27659-9

References C81

[6] J. M. Jorge. An algorithm for optimizing a linear function over an
integer efficient set. European Journal of Operational Research,
195:98–103, 2009. doi:10.1016/j.ejor.2008.02.005 C70

[7] M. Ozlen, B. A. Burton and C. G. MacRae. Multi-objective integer
programming: an improved recursive algorithm. Journal of Optimization
Theory and Applications, 160:470–482, 2014.
doi:10.1007/s10957-013-0364-y C71, C74, C76, C77, C78

[8] C .H. Papadimitriou and K. Steiglitz Combinatorial Optimization:
Algorithm and Complexity, Prentice Hall, 1982.
doi:10.1109/TASSP.1984.1164450 C72

[9] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization
method in multiobjective problems. In SAC ’02: Proceedings of the 2002
ACM Symposium on Applied Computing. ACM, New York, 2002, pp.
603–607. doi:10.1145/508791.508907 C70

[10] A. Przybylski and X. Gandibleux. Multi-objective branch and bound.
European Journal of Operational Research, 260:856–872, 2017.
doi:10.1016/j.ejor.2017.01.032 C71

Author addresses

1. W. Pettersson, School of Science, RMIT University, Victoria 3000,
Australia.
mailto:william@ewpettersson.se

2. M. Ozlen, School of Science, RMIT University, Victoria 3000,
Australia.
mailto:melih.ozlen@rmit.edu.au

https://doi.org/10.1016/j.ejor.2008.02.005
https://doi.org/10.1007/s10957-013-0364-y
https://doi.org/10.1109/TASSP.1984.1164450
https://doi.org/10.1145/508791.508907
https://doi.org/10.1016/j.ejor.2017.01.032
mailto:william@ewpettersson.se
mailto:melih.ozlen@rmit.edu.au

	Introduction
	Background
	The algorithm of Ozlen, Burton and MacRae
	Parallelisation
	Range splitting
	Efficient parallelisation

	Implementations and running times
	Implementation

	Conclusion
	References

