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Abstract

Motivated by the approximate cloaking problem, we consider a
variable coefficient Helmholtz equation with a fixed wave number. We
use finite element methods to discretize the equation. Numerical results
are shown to exhibit cloaking behaviour.
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1 Introduction

In 2005 and 2006 serious theoretical proposals [1, 6] and a widely reported
experiment by Schurig et al. [9] were put forward for cloaking devices—
structures that would not only render an object invisible but also undetectable
to electromagnetic waves. The mathematical foundations of optical cloaking
have developed significantly since then, see, for example, the excellent article
by Greenleaf et al. [3].

The transformation optics approach to cloaking which uses a singular change
of coordinates to blow up a point to the region being cloaked [4, 8] is difficult
to analyse theoretically due to this singularity. Hence a rigorous numerical
simulation should shed light on the problem.

In this paper, we will review the theoretical background of the approximate
cloaking problem and propose a finite element method to numerically solve
the problem. While there have been other papers, e.g., the paper by Cai et
al. [2], describing cloaking experiments using the commercial finite-element
comsol Multiphysics package, proper mathematical explanations were not
available there. Here, we offer a summary of the theory, as well as a finite
element solution using an open source package.
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2 Mathematical problem

Let Ω be a bounded domain in Rn for n = 2, 3 . Light waves passing through
the domain Ω can be described by the wave equation

q(x)Utt −∇ · (A(x)∇U) = 0.

Here, U is the displacement of the wave and q(x) and A(x) are functions that
model the anisotropy of wave propagation through the domain Ω .

For a harmonic solutions U = ue−ikt we obtain the scalar Helmholtz equation

∇ · (A(x)∇u) + k2q(x)u = 0 ∈ Ω. (1)

The solution to the Helmholtz equation (1) is uniquely defined if either the
Dirichlet condition

u = g on ∂Ω, (2)

or the Neumann condition

∂u

∂n
= ψ on ∂Ω (3)

is given.

Let H1(Ω) be the Sobolev space which consists of functions having first
derivative in L2(Ω) . We define the Sobolev space H1/2(∂Ω) as follows: a
function φ belongs to H1/2(∂Ω) if and only if φ is the restriction to ∂Ω
of some function in H1(Ω) . Let H−1/2(Ω) be the dual space of H1/2(Ω) .
These are the natural spaces for Dirichlet and Neumann data of finite energy
solutions. With respect to the Helmholtz equation (1), we define the map
ΛA,q : H−1/2(∂Ω)→ H1/2(∂Ω) as the solution of

ΛA,q(ψ) = u|∂Ω,

u solves (1) with
∑

Aij
∂u

∂xj
νi = ψ on ∂Ω.

(4)
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Let Br be the open ball of radius r , that is, Br = {x ∈ Rn : |x| < r} . Suppose
the given domain Ω contains B2 . A specific structure Ac(x),qc(x) defined
on the shell B2 \ B1 is said to cloak the unit ball B1 if whenever

A(x),q(x) =


I, 1 if x ∈ Ω \ B2,

Ac,qc if x ∈ B2 \ B1,

arbitrary if x ∈ B1,

(5)

then
ΛA,q = ΛI,1.

Here I is the identity matrix and the equality A,q = I, 1 means A = I and
q = 1 . Thus, the boundary measurements (Dirichlet and Neumann data)
on ∂Ω with respect to A(x),q(x) are identical to those obtained when A = I
and q = 1 . Physically the field U appears uniformly on Ω regardless of
the content on B1 . Or, light waves at the boundary ∂Ω behave identically
regardless of the content on B1 , giving the impression that B1 is cloaked.

A change of variable scheme was proposed by Schurig et al. [9] to construct a
cloak Ac,qc . The scheme relies on the following [4]:

Let F : Ω → Ω be a differentiable, orientation-preserving, surjective and
invertible map such that F(x) = x on ∂Ω . Let DF be the Jacobian matrix
and let

F∗A(y) =
DF(x)A(x)DFT (x)

det(DF(x))
, F∗q(y) =

q(x)

det(DF(x))
, x = F−1(y).

Then
u(x) solves ∇x · (A(x)∇xu) + k2q(x)u = 0,

if and only if

w(y) = u(F−1(y)) solves ∇y · (F∗A(y)∇yw) + k2F∗q(y)w = 0.

Moreover, A,q and F∗A, F∗q give the same boundary measurements, i.e.,

ΛA,q = ΛF∗A,F∗q.
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An example of the map F is given by F = Fε [9], where

Fε(x) =


x
ε

if |x| 6 ε,(
2−2ε
2−ε

+ |x|

2−ε

)
x
|x|

if ε 6 |x| 6 2,

x if |x| > 2.

(6)

Therefore, Fε maps Bε to the unit ball B1 , the annulus B2 \Bε to the annulus
B2 \ B1 and outside B2 the map Fε is simply the identity map.

The inverse map F−1
ε is

F−1
ε (y) =

{
εy if |y| 6 1.

y
(
2− ε− 2(1−ε)

|y|

)
if 1 6 |y| 6 2.

(7)

It has been suggested [3, 9] that if we take F0 = limε→0 Fε , i.e., F0 is the
singular map that blows the origin up to the ball B1 , and define

Ac = (F0)∗I, qc = (F0)∗1,

then the ball B1 would be cloaked. Hence for small ε , then (Fε)∗I, (Fε)∗1
should nearly cloak B1 , which means that if

A(y),q(y) =


I, 1 if y ∈ Ω \ B2,

(Fε)∗I, (Fε)∗1 if y ∈ B2 \ B1,

arbitrary if y ∈ B1,

(8)

then ΛA,q ≈ ΛI,1 . However, due to resonance the statement is not true for
k 6= 0 [4, Section 2.5].

To explain this point further, let Ω = B2 and consider

Aε,qε =

{
I, 1 if x ∈ B2 \ Bε,

Ãε, q̃ε if x ∈ Bε,
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where Ãε and q̃ε are real-valued constants. The general solution of the
associated two-dimensional Helmholtz equation can be expressed in polar
coordinates as

u =


∑∞̀

=−∞ α`J`
(
kr

√
q̃ε/Ãε

)
ei`θ if r 6 ε,∑∞̀

=−∞[β`J`(kr) + γ`H(1)
` (kr)]ei`θ if ε < r 6 1,

for appropriate choices of α` , β` , and γ` . Here J` and H
(1)
` are the classical

Bessel and Hankel functions of the first kind, respectively. When we solve a
Neumann problem, the three unknowns for mode ` (α`,β`,γ`) are determined
by three linear equations: agreement with the Neumann data at r = 2 and
satisfaction of the two transmission conditions at r = ε . However, for any
k 6= 0 and any ` , this linear system has zero determinant at selected values of
Ãε, q̃ε . When the linear system is degenerate (for some `) the homogeneous
Neumann problem has a nonzero solution, and the boundary map ΛAε,qε is
not even well-defined. In other words, no matter how small the value of ε , for
any k 6= 0 there are cloak-busting choices of Ãε, q̃ε for which the ball with
such an inclusion is resonant at frequency k .

To deal with the resonance problem, a near-cloak mechanism was introduced
by Kohn et al. [4], which has a new damping parameter β > 0 . The near-cloak
is defined as

A(y),q(y) =


I, 1 if y ∈ Ω \ B2,

(F2ε)∗I, (F2ε)∗1 if y ∈ B2 \ B1,

(F2ε)∗I, (F2ε)∗(1+ iβ) if y ∈ B1 \ B1/2,

arbitrary real, elliptic if y ∈ B1/2.

(9)

With β > 0 , the following problem is well-posed [4, Proposition 3.5]{
∇(Aε∇u) + k2qεu = 0 if x ∈ Ω
∂u/∂ν = ψ if x ∈ ∂Ω,

(10)
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where 
Aε = I, qε = 1 if x ∈ Ω \ B2ε,

Aε = 1, qε = 1+ iβ if x ∈ B2ε \ Bε,

Aε,qε arbitrary real, elliptic if x ∈ Bε.

Furthermore, when β ∼ ε−2, then their construction approximately cloaks B1/2

in the sense that

‖ΛA,q −ΛI,1‖ 6 C

{
1/| log ε| in space dimension 2,
ε in space dimension 3.

(11)

The theoretical estimate (11) is pessimistic in two dimensions since the proof
relies on the fundamental solution of the two-dimensional Laplace equation.
However, numerical experiments show that when ε → 0 , the approximate
cloaking scheme performs reasonably well.

3 Using finite element methods

In this section, we will describe how to solve the near-cloaking problem using
finite element methods. The weak formulation of (10) is: find u ∈ H1(Ω) so
that∫

Ω

[Aε(x)∇xu(x) · ∇xv(x) − k2qεu(x)v(x)]dx =
∫
∂Ω

Aεψvdy,

for all v ∈ H1(Ω). (12)

The weak formulation of the push-forward problem is: find w ∈ H1(Ω) so
that∫

Ω

[F∗(Aε)∇yw(y) · ∇yφ(y) − k2qεw(y)φ(y)]dy =

∫
∂Ω

F∗Aεψφdy,

for all φ ∈ H1(Ω). (13)
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Figure 1: A uniform mesh for computing Uε on B2 .

Introducing the bilinear form

a(w,φ) =

∫
Ω

[F∗(Aε)∇yw(y) · ∇yφ(y) − k2qεw(y)φ(y)]dy,

and defining the finite dimensional space

Vh = span{φ1,φ2, . . . ,φN} ⊂ H1(Ω),

the Ritz–Galerkin approximation problem to the push-forward problem (13)
is written as: find w ∈ Vh so that

a(w,χ) =

∫
∂Ω

Aεψχdy, for all χ ∈ Vh(Ω).

A uniform mesh that is used to construct the piecewise linear finite elements
when Ω = B2 is shown in Figure 1.
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4 Numerical experiments

In this section, we describe some initial numerical experiments on the interior
two-dimensional Dirichlet example introduced by Kohn et al. [4]. Consider
then the problem{

∇ · (F∗(Aε)∇Uε(y)) + k2F∗(qε)Uε(y) = 0 y ∈ B2,

∂νUε(y) = ∂νu0(2, θ) y on Γ = ∂B2,
(14)

where

u0(r, θ) =

30∑
`=−30

J`(kr)e
i`θ,

and J` is the classical Bessel function of order ` .

In two dimensions,

F∗(Aε)(y) =
DF(x)DFT (x)
det(DF(x))

∣∣∣
x=F−1(y)

if 1 < |y| 6 2,

F∗(qε)(y) =
1

det(DF(x))

∣∣∣
x=F−1(y)

if 1 < |y| 6 2,

F∗(Aε)(y) = 1, F∗(qε)(y) = 4ε2(1+ iβ) if 1
2
< |y| 6 1,

F∗(Aε)(y) = Aε, F∗(qε)(y) = 4ε2qε if |y| 6 1
2
.

We now compute the Jacobian F ′ = DF(x) = (∂Fi/∂xj) . The computation
for the special case ε = 0 is considered by Kohn et al. [5]. For the general
case

DF(x) =

[(
1− 2ε

1− ε

)
1

|x|
+

1

2(1− ε)

]
I−

(
1− 2ε

1− ε

)
x̂x̂T

|x|
, (15)

where x̂ = x/|x| and I is the identity matrix.

To find the determinant of DF(x) , we note that x̂ is an eigenvector of DF(x)
with eigenvalue 0.5/(1− ε) and x̂⊥ is an n− 1 dimensional eigenspace with
eigenvalue

(1− 2ε)

(1− ε)

1

|x|
+

1

2(1− ε)
.
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So, the determinant of DF(x) is

det(DF(x)) =
1

2(1− ε)

[
(1− 2ε)

(1− ε)

1

|x|
+

1

2(1− ε)

]n−1

.

For x = F−1(y) , we have

1

det(DF(F−1(y)))
=

2

|y|2

(
2|y|(1− ε) − 2(1− 2ε)

)2
.

Consequently, we can calculate the product DF(x)(DF(x))T

DF(x)(DF(x))T =

(
(1− 2ε)2

(1− ε)2
1

|x|2
+

(1− 2ε)

(1− ε)2
1

|x|
+

1

4(1− ε)2

)
I

−

(
(1− 2ε)2

(1− ε)2
1

|x|2
+

(1− 2ε)

(1− ε)2
1

|x|

)
x̂x̂T .

For the Dirichlet problem we have performed numerical simulations with the
program package maiprogs [7] using fem-2d with piecewise linear elements.
We set the wavenumber k = 1 and Aε = qε = 1 .

In Figure 2 the finite element approximations uh to Uε for ε = 10−d, d = 1, 6
and β = ε−2 are shown. As ε gets smaller, the numerical solution becomes
more uniform on B1/2 , so the content of B1/2 is cloaked. These are consistent
with numerical results of Kohn et al. [4], which were obtained using a different
numerical method.

5 Conclusions

In this work, we have summarised the approximate cloaking framework
proposed in [4] and proposed a finite element method to construct numerical
solutions using an open source package. This will lay the foundation for future
work in error analysis and coupled finite element–boundary element methods
for the approximate cloaking problem.
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Figure 2: The two-dimensional push-forward fem solutions Uε on B2 . (a):
ε = 10−1, and (b): ε = 10−6.
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