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A gradient recovery method based on an
oblique projection and boundary modification
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Abstract

The gradient recovery method is a technique to improve the approx-
imation of the gradient of a solution by using post-processing methods.
We use an L2-projection based on an oblique projection, where the
trial and test spaces differ, for efficient numerical computation. We
modify our oblique projection by applying the boundary modification
method to obtain higher order approximation on the boundary patch.
Numerical examples are presented to demonstrate the efficiency and
optimality of the approach.
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1 Introduction

The gradient recovery method is a popular technique for approximating the
gradient of a solution. The main idea is based on using various post-processing
techniques on a computed solution to obtain an approximation to the gradient
of the solution. There are many gradient recovery techniques, such as patch
recovery [8, 10], polynomial preserving recovery [1, 9] and local and global L2-
projection [8]. While all these methods display superconvergence on the
interior domain, the rate of convergence deteriorates on the boundary patch.

We propose a new gradient recovery approach based on an oblique projection
using boundary modification. This approach improves the result by Lamich-
hane [4] to obtain higher order approximation on the boundary patch. In
Subsection 2.2 we introduce our formulation of the orthogonal and oblique
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projection, and show that a significant reduction in computational time us-
ing an oblique projection can be obtained. In Subsection 2.3 we introduce
the boundary modification method and its construction that leads to a lin-
ear extrapolation. In Section 3 the approximation property theorem of our
method is presented, which is based on the classical paper by Křížek and
Neittaanmäki [3] combined with the L2-projection approach from Xu and
Zhang [8] and Lamichhane [4]. The proof of the theorem requires that the
triangulation has to satisfy certain conditions so that the extrapolation still
preserves approximation properties on the interior domain. Two numerical
examples, a transcendental solution and a less-regular solution, are given in
Section 4 to verify the convergence rate of our gradient recovery method.
Both examples follow the predicted theoretical rate of convergence.

2 Formulation

2.1 Finite element discretisation

Let Ω ⊂ R2 be a bounded polygonal domain with boundary ∂Ω . Let Th
be a uniformly congruent triangulation of the polygonal domain Ω . We
use the standard linear finite element space Vh ⊂ H1 (Ω) defined on the
triangulation Th, where

Vh := {v ∈ C0 (Ω) : v|T ∈ P1 (T) , T ∈ Th} .

Let Sh = span{ϕ1,ϕ2, . . . ,ϕN} be the standard finite element basis for Vh. A
piecewise linear interpolant of a continuous function u is written as uh ∈ Vh
with

uh (x) =

N∑
i=1

u (xi)ϕi (x) ,

where N = dimSh. We denote the set of mesh nodes by N, the boundary
nodes by Nbd and the set of interior mesh nodes by Nin = N\Nbd. With
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similar notation, we denote the set of elements, the boundary elements (the
elements that have one or more nodes on the boundary) and the set of
interior elements by T,Tbd and Tin, respectively. With this notation, we also
define Ωin = ∪Tin and Ωbd = ∪Tbd as the interior domain and boundary
patch, respectively.

2.2 Projection and biorthogonal basis

Computing the gradient recovery requires a projection of ∇uh onto the
finite element space Vh. There are two types of projection: orthogonal and
oblique. The orthogonal projection operator Ph projects ∇uh onto Vh by
finding gkh = Ph

(
∂uh
∂xk

)
∈ Vh for k = 1, 2, that satisfies∫

Ω

gkhϕj dx =

∫
Ω

∂uh

∂xk
ϕj dx, 1 6 j 6 N . (1)

Let gkh =
∑N
i=1 g

k
iϕi for k = 1, 2, then equation (1) can be written as

N∑
i=1

gki

∫
Ω

ϕiϕj dx =

∫
Ω

∂uh

∂xk
ϕj dx, 1 6 j 6 N . (2)

Equation (2) is equivalent to the system of linear equations M~gk = ~fk

for k = 1, 2, where M is the mass matrix, ~gk =
(
gk1 , ...,g

k
N

)T and ~fk =(
fk1 , ..., f

k
N

)T , with fkj =
∫
Ω
∂uh
∂xk
ϕj dx. Solving this equation requires the

computationally expensive inversion of the matrix M. The computation time
can be significantly reduced by diagonalizing the matrix using a suitable
oblique projection instead of an orthogonal projection.

The oblique projection operator Qh projects ∇uh onto Vh by finding gkh =

Qh

(
∂uh
∂xk

)
∈ Vh for k = 1, 2, that satisfies∫

Ω

gkhµj dx =

∫
Ω

∂uh

∂xk
µj dx, 1 6 j 6 N , (3)
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where µj ∈ Mh. The piecewise polynomial space Mh has the following
construction method. Starting with the standard bases for Vh, we construct
a space Mh spanned by the basis {µ1,µ2, . . . ,µN} so that the basis functions
of Vh and Mh satisfy a biorthogonality relation∫

Ω

ϕiµj dx = cjδij, 1 6 i, j,6 N ,

where δij is the Kronecker symbol, and cj a nonzero scaling factor. The basis
functions of Mh are constructed locally on a reference element T̂ so that
for every i, the basis functions ϕi and µi have the same support [5]. The
projection operator Qh is well defined due to the stability condition [4]: there
is a constant β > 0 such that

β = inf
ϕh∈Vh

[
sup

µh∈Mh

∫
Ω
ϕhµh

‖ϕh‖L2(Ω)‖µh‖L2(Ω)

]
.

Let gkh =
∑N
i=1 g

k
iϕi for k = 1, 2, then equation (3) can be written as

N∑
i=1

gki

∫
Ω

µiϕj dx =

∫
Ω

∂uh

∂xk
µj dx, 1 6 j 6 N . (4)

Equation (4) is equivalent to the system of linear equations D~gk = ~fk for k =

1, 2, where D is a diagonal matrix, ~gk =
(
gk1 , ...,g

k
N

)T and ~fk =
(
fk1 , ..., f

k
N

)T ,
with fkj =

∫
Ω
∂uh
∂xk
µj dx .

2.3 Boundary modification

The boundary modification method comes from the context of mortar finite
element [7]. The modification allows us to remove the basis functions asso-
ciated to the nodes belonging to Nbd and add a multiple of them onto the
basis functions associated to the nodes belonging to Nin .
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We construct our boundary modified space as follows. For each boundary
node ni ∈ Nbd with global coordinate xi, select an interior element T ∈ Tin

with interior nodes nim ∈ Nin with global coordinates xim , 1 6 m 6 3,
respectively. We remove the basis functions ϕi ∈ Vh and modify ϕim , 1 6
m 6 3, as

ϕ̃im = ϕim + αmϕi, 1 6 m 6 3 ,

where αm, 1 6 m 6 3, are scalar numbers that satisfy

3∑
i=1

αmp (xim) = p (xi) , p ∈ P1 (Ω) ,

that is, (αm)m=1,2,3 are the barycentric coordinates of xi with respect to the
chosen interior element.

This boundary modification technique is a linear extrapolation and the bound-
ary modified space preserves the approximation property from the original
space Vh [7]. We denote the oblique projection operator on the boundary
modified space as Q∗h.
Remark 1. This study is restricted to the two-dimensional case, but this
technique can be extended to the three-dimensional case by selecting corre-
sponding oblique projections and boundary modifications.

3 Approximation property

Theorem 2. Let Ω be a bounded polygonal domain with Lipschitz bound-
ary ∂Ω in R2 and Th be a uniformly congruent triangulation of Ω. Given u ∈
H3 (Ω) with its Lagrange interpolant uh ∈ Vh, there exists a constant C > 0
independent of mesh-size h such that

‖∇u−Q∗h (∇uh) ‖0,Ω 6 Ch2 |u|3,Ω .
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Proof: Define the average gradient operatorGh and the linear interpolant uh ∈
Vh. For uniformly congruent triangulation and any x ∈ N ,

Gh (uh) (x) =
1

6

∑
K∈Tin
K∩{x} 6=∅

∇uh|K ,

where ∇uh|K is the value of the gradient ∇uh on the triangle K and K
denotes the closure of triangle K . Křížek and Neittaanmäki [3] showed
that given Ωin ⊂ Ω such that max distx∈∂Ωin (x,∂Ω) = O (h2) and u|Ωin ∈
H3 (Ωh) ,

‖∇u−Gh (uh) ‖0,Ωin 6 Ch2 |u|3,Ωin .

Since [4, 8]
Gh (uh) = Qh (∇uh) ,

we obtain a similar approximation property for the oblique projection operator

‖∇u−Qh (∇uh) ‖0,Ωin 6 Ch2 |u|3,Ωin .

Using that the boundary modification technique is a linear extrapolation that
preserves the linear approximation property [7], we conclude

‖∇u−Q∗h (∇uh) ‖0,Ω 6 Ch2 |u|3,Ω .

♠

4 Numerical results

We provide two numerical examples to verify the convergence rate and ro-
bustness of our gradient recovery method. We survey the L2-error and rate of
convergence for the standard oblique projection and the modified boundary
oblique projection. We denote the error from the boundary modified oblique
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projection as E∗u = ‖∇u − Q∗h (∇uh) ‖L2(Ω), where uh is the Galerkin
solution of the standard Poisson problem

∆u = −f ,

and the right-hand side function f is derived from the exact solution. We
also denote the error from the standard oblique projection on the whole and
interior domain, respectively as Eu = ‖∇u −Qh (∇uh) ‖L2(Ω) and Einu =
‖∇u − Qh (∇uh) ‖L2(Ωin). For comparison we present the error from the
gradient of the solution, that is σh, using the stabilised mixed finite element
method [2]. This error is denoted by Emxu = ‖∇u− σh‖L2(Ω) .

Since the triangulation is uniformly congruent, the uniform mesh-size and
the number of elements in the error approximation tables and are related
by h ∝ N−1/2. Therefore each subsequent row in these tables after the first
row corresponds to halving the mesh-size. The exponential rate at which the
errors decrease between subsequent rows as a power of h is also shown.

4.1 Transcendental solution

Our first example is a well-behaved problem with a uniformly smooth solution.
We consider as an exact solution the transcendental function

u = ex
(
x2 + y2

)
+ y2 cos (xy) + x2 sin(xy), (5)

Dirichlet boundary conditions for this exact solution are constructed on ∂Ω ,
where Ω = [0, 1]2. The errors for this problem are shown in Table 1 as the
number of elements varies.

The convergence rate of error from the nonmodified approach on the interior
domain reaches 2, but this convergence rate deteriorates on the boundary
and only reaches 1.5. Our boundary modified approach successfully preserves
the convergence rate on the boundary. Also, even though the convergence
rate of Eu and Emxu are similar, the mixed finite element method gives a
better approximation, as indicated by the lower value of the error.
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Table 1: Gradient error approximation for the exact solution (5) (see text for
details of the various errors).

N E∗u rate Eu rate Einu rate Emxu rate
32 4.4e-1 - 8.3e-1 - 1.9e-1 - 6.3e-1 -
128 1.1e-1 1.99 3.2e-1 1.36 7.4e-2 1.37 2.2e-1 1.49
512 2.7e-2 2.04 1.2e-1 1.43 2.2e-2 1.75 7.8e-2 1.52
2048 6.7e-3 2.02 4.3e-2 1.47 6.0e-3 1.89 2.7e-2 1.53
8192 1.6e-3 2.02 1.5e-2 1.48 1.6e-3 1.95 9.4e-3 1.52
32768 4.1e-4 2.01 5.5e-3 1.49 4.0e-4 1.97 3.3e-3 1.52

Table 2: Gradient error approximation for the exact solution (6), with α = 1.6
(see text for details of the various errors).

N E∗u rate Eu rate Einu rate Emxu rate
32 1.2e-0 - 3.2e-1 - 2.1e-2 - 3.1e-1 -
128 6.3e-2 4.27 1.2e-1 1.45 2.1e-2 -0.01 1.1e-1 1.55
512 2.0e-2 1.63 4.2e-2 1.47 8.0e-3 1.36 3.6e-2 1.55
2048 6.4e-3 1.66 1.5e-2 1.48 2.8e-3 1.50 1.3e-2 1.53
8192 2.1e-3 1.62 5.4e-3 1.48 9.6e-4 1.55 4.4e-3 1.51

4.2 Less-regular solution

In the second example we test the behaviour of our method for a solution with
less regularity. We use a modified version of the standard re-entrant corner
problem to obtain a source of singularities in the solution. This problem
is defined on the slit domain Ω = (−1, 1)2 \ {0 6 x 6 1,y = 0} and Dirichlet
boundary conditions are constructed on ∂Ω. The exact solution is

u = rα sin (αθ) (6)

where r =
√
x2 + y2 is the distance from the corner and θ = tan−1 (y/x). This

problem satisfies u ∈ H1+α (Ω) and in this example α = 1.6 to obtain H2.6

regularity.

In Table 2 we can observe the superiority of our approach compared to the
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standard oblique projection method and mixed finite element method, even
though it is not as great as our previous example. While the convergence
rate seems similar, our approach gives the best approximation followed by
the mixed finite element method and then the standard oblique projection
method.

5 Conclusion

We have proposed a gradient recovery method based on an oblique projec-
tion using a boundary modification. The boundary modification technique
improves the approximation for the gradient on the boundary nodes and pre-
serves the superconvergence of the interior domain. Numerical examples show
that our approach has better accuracy than the standard oblique projection
approach even with a less-regular solution. Furthermore, this boundary mod-
ified gradient recovery operator can be applied to approximate the solution
of a biharmonic problem [6].
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