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A fast, spectrally accurate solver for the
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Abstract

We present a new numerical technique, the Gegenbauer homotopy
analysis method, which allows for the construction of iterative solutions
to nonlinear differential equations. This technique is a numerical
extension of the semi-analytic homotopy analysis method that exhibits
spectral convergence while performing sparse matrix operations in
Gegenbauer space. This technique is used to present solutions to the
Falkner—Skan equation, a well known problem in boundary layer fluid
dynamics. These solutions are compared to previously published works,
and the convergence properties exhibited by this new technique are
considered.
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1 Introduction

When it comes to investigating the steady-state dynamics of flows in the
presence of a solid boundary subject to nonslip boundary conditions, it is
sometimes possible to map the governing Navier-Stokes equations to equations
that are more suitable for analytic and numerical analysis. Two of the most
well known equations for this flow regime are the Blasius and Falkner—Skan
equations, which describe the steady flow of an ideal fluid past a flat plate.
For the Blasius equation |2] the plate is aligned with the direction of a uniform
freestream flow, whereas Falkner and Skan [4] developed their eponymously
named equation in order to model the steady flow past a flat plate inclined
at an angle of attack relative to the freestream flow direction.

One of the primary insights that can be gained by modelling these flows in the
manner of Blasius, and Falkner and Skan is the calculation of the skin-friction
drag coefficient, which corresponds to the derivative of the fluid velocity
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with respect to the dimensionless wall-normal distance. Historically, these
equations have been solved using a range of analytic and numeric techniques,
with Blasius initially attempting to solve the equation by computing a series
solution in the near wall region, and seeking values of the skin-friction drag
that allowed for the series solution to be matched to an asymptotic solution
far from the wall—an approach that was ultimately unsuccessful. From a
numerical perspective, a common approach has been to apply the shooting
method, however this has been shown to introduce floating point overflow
into the calculated solution [1]|. In this work, we present a novel technique
to solve the Falkner—Skan equations iteratively, based upon the homotopy
analysis method (HAM), and which only requires a single matrix inversion for
each position in parameter space.

2 Problem description

The Falkner—Skan equation is the result of reducing the equations of flow past
a flat plate into the two-point boundary value problem

a*f d* ar\’

— + f— 1—( — =0 1
ans " Tap (dn)] | W
f(0) = —S;(O) =0, —(611:] (m) — 1 asn — oo. (2)

Here n and f are similarity variables, and the wedge angle of attack is 7t3/2,
with the Blasius equation for flow past a flat plate corresponding to the case
where = 0. The Falkner—Skan equation is well known to have a single
solution for 3 > 0, and two solutions—known as the normal and reverse flow
solutions, based upon the sign of the second derivative on the boundary—for
Bmin < B < 0, where Fazio [5] showed Bin & —0.1988.
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3.1 The Gegenbauer homotopy analysis method

The homotopy analysis method, as first proposed by Liao [6], is an iterative
technique for solving nonlinear differential equations based upon the idea
of a homotopy—a smooth deformation from one space onto another. For
differential equations, this process involves using an initial guess to the
solution of an equation and deforming it onto the solution to the full nonlinear
problem.

To solve a nonlinear equation of the form N[u(x)] = ¢(x) we can construct
a homotopy between this and some arbitrary linear problem £[u(x)] =0 by
constructing a homotopy equation in the form of

(1 —q)LMU(x; q) —uo(x)] = qh(N[U(x; q)] — $(x)). (3)

Here € (—2,0) is a convergence control parameter and q is the homotopy
parameter, which at g = 0 gives us the arbitrary linear problem, and at q =1
the full nonlinear problem.

By varying q from 0 to 1 the solution of the linear problem can be deformed
onto the full nonlinear equation. To do this, we differentiate equation (3) m
times and then rescale, so that the homotopy equation can now be recast as
a sequence of linear differential equations of the form

ho O™ HIN[U(x; q)] — d(x))

L[um(x) _melumfl(x)] -

(m—1)! agqm—! q=0
with
0 ifm<1,
Xm = .
1 ifm>1.

The solution to the original equation is F(x) = U(x;1) = Y 7 _ Um(x).
Unlike many other perturbative techniques, HAM does not rely upon any
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small perturbation parameter to exist in the problem, nor one to be introduced
artificially. Furthermore, as the linear operator does not depend upon the
solution at the previous step, the scheme only requires a single matrix inversion
after the discretization of the equations, which has significant implications
for the computational cost of the scheme.

3.2 Linear solver

In previous papers addressing the solution of various nonlinear problems with
numerical analogues of the homotopy analysis method, the linear equations
have been cast in terms of Chebyshev differentiation matrices, which results in
a technique known as the spectral homotopy analysis method (SHAM) [7, 9, 10].
While this approach is well understood, it produces dense matrices that often
are ill-conditioned for variable coefficient boundary value problem. Recently,
Olver and Townsend [8] developed a spectral method for linear ordinary
differential equations which results in almost banded, sparse matrices that
can solve linear differential equations in O(m?n) operations, where m and n
are respectively the numbers of Chebyshev points to resolve the differential
operators and the solution to the differential equation.

A general variable coefficient boundary value problem on [—1, 1]

daN d
Llu(x)] = aN (x)dx—;L I al(x)d—;L +au = f(x), (5)
where {a°, ..., a", f} are suitably smooth functions on [—1,1], can be dis-

cretized in terms of the set of Gegenbauer polynomials, of which the Chebyshev
polynomials are a subset. The linear operator in (5) can be represented as a
matrix operator through

N—1 ,N-1 N-1
L =Mn[a"Dy + ( H Si> Mala?Dy + ( H Si) Mola’]. (6)
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Here M, [a?] are multiplication operators that take the functions a*A(®)(x)
in Chebyshev space, and separates out the contribution of a*, creating a
matrix operator. The differential operators D, act on Chebyshev polynomials
and differentiate in Gegenbauer space, and S, are conversion operators from
Chebyshev to Gegenbauer space. Full details on the calculation of these
matrices can be found in the paper by Olver and Townsend [8]. Numerically
implementing the homotopy analysis method using the aforementioned linear
discretization gives the Gegenbauer homotopy analysis method (GHAM)

3.3 Solution technique

To solve the Falkner-Skan equation on a Chebyshev grid, the computational
domain 1 € [0,00) is truncated to [0,L], and in turn is mapped to the
Chebyshev domain x € [—1,1] by the linear mapping x = 2n/L —1. In
order to have homogeneous boundary conditions the substitution f(n) =
F(x)+n+e ™ —1 is made. The boundary conditions for equation (1) become
F(—1) =0, F/(1) = F/(0) = 0. This transform results in a variable coefficient
boundary value problem with the modified linear operator

3 13 2 2
o (Y 20+ (e

2 . dF(x) .
—2<E>B(1—e )dx +(eMF. (7)

The infinite series of linear differential equations that results from solving the
Falkner—Skan equation are

d u oAU AU, g
m 1 — Z UL —_— - - B dX #1 (8)
1=0

— (1 — Xm—1) [B(l —(1—e "] —e"m+e " —2).
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This system of linear boundary value problems can be solved using a sparse,
Chebyshev based matrix solver following Olver and Townsend [8]. The
auxiliary parameter % is calculated by applying bounded minimization on the
solution residuals. Solutions to the Blasius equation are calculated in the
same numerical scheme as above, with (3 simply being set to 0.

4 Discussion

The numerical scheme described above was solved in Matlab on a 512 point grid
with Chebyshev spacing with solutions up to the 20th order being calculated
using GHAM. The domain of x € [0, c0) was truncated to [0, 20] , then mapped
to the Chebyshev grid by setting L = 20. This domain truncation was justified
by the rate in which f’(n) approaches 1 as 1 increases, which suggests that
the domain truncation is appropriate in the context of the original boundary
condition that f'() — 1asn — oo.

Solutions to the Falkner—Skan equation using GHAM were found over —0.198 <
3 < 5, generating a range of solutions, with the solutions for the two indicative
cases of B = —0.1 and 1 presented in Figure 1. A representative sample
of these results, and comparison results using SHAM and Matlab’s BVP4cC
routine are presented in Table 1, where it can be seen that with the exception
of B = —0.195 there is strong agreement between the solutions generated by
all three techniques. To calculate these solutions for a 512 point Chebyshev
grid at h = —1 for GHAM and SHAM, and a 50 point grid in BVP4cC, it took
an average of 0.039, 0.22 and 2.16 seconds per calculation respectively. This
disparity between the number of grid points for the homotopy based codes
and BVP4C is a product of the latter’s significantly slower computational
performance.

A more comprehensive comparison of the relationship between 3 and the work
of Cebeci and Keller [3] is shown in Figure 2. With the exception of § = 0.6,
the solutions align to at least 3 significant figures. The disparity between the
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Figure 1: Normal flow solutions to the Falkner—Skan equation, and their first
and second derivatives, for a) $ =1 and b) = —0.1

f(n)
f(m)

Table 1: Absolute error between calculated values of the skin friction coefficient
f”7(0) and the reference case of SHAM for both GHAM and Matlab’s BvP4C
routine, presented for a range of [3 values.

P
-0.195 0 0.2 0.6 1.0 1.2 2.0

GHAM 58 x 1077 48x1077 3.8x1077 3.6x1077 22x1077 3.1x1077 3.1x1077
BVP4C 23 x 1072 35x107% 94x10% 45x10% 28x107° 1.8x107° 22x107°
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Figure 2: The relationship between 3 and f”(0). In blue are the solutions
calculated using the Homotopy based method, and in red are previously
calculated solutions [3].

"(0)

two appears to be the result of a tabulation mistake in the original paper, as
the presented result for f = 0.6 aligns much more closely with = 0.8 from
the results calculated using GHAM.

To assess the validity of this new technique, we examined the rate of conver-
gence of the Ly and L, norms of the residual of the GHAM solutions to the
Falkner—Skan equation, as shown in Figure 3. For 3 = 1 and at the optimal
value of 7 it took 18 iterations for the residuals to converge to near machine
precision, in a manner that suggests spectral convergence.



5 Conclusion C66

Figure 3: Convergence of the residual at f = 1 and at the optimal A . The L,
and L., norm of the residual in blue and red respectively.
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5 Conclusion

A new numerical technique based upon the homotopy analysis method has
been applied to solving the nonlinear Blasius and Falkner—Skan equations from
boundary layer theory. The numerical calculations accurately reproduce the
results from previous studies. This was performed using a numerical technique
that only required a single matrix inversion of a sparse, mostly-banded matrix—
which has a significant impact on the overall computational cost—whilst still
exhibiting spectral convergence. These computational advantages translated
to a significant improvement in computational speed as compared to both
SHAM using Chebyshev collocation matrices and Matlab’s BVP4C routine.
However, a branch-following algorithm will need to be implemented in order
to solve for the dual solutions that exist for Bnmin < B <0.
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