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Abstract

We present a new mitc (Mixed Interpolated Tensorial Components)
finite element method for Reissner–Mindlin plate equations. The new
finite element method uses a biorthogonal system to construct the
reduction operator for the mitc element. Numerical results are shown
to demonstrate the performance of the approach.
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1 Introduction

Reissner–Mindlin plate or shell equations are often used to compute the
deformation of a thin plate or shell under some external forces. Some useful
industrial applications for Reissner–Mindlin plate equations include crash
simulation of cars, optimisation of wind-turbines and ice shelf modelling.
Since these equations are not analytically solvable in most applications, finite
element methods are employed to compute the approximate solution of these
equations. The Reissner–Mindlin plate or shell equations model the thin plate
or shell with a parameter for the thickness of the plate or shell, consequently
it is challenging to develop a numerical method which converges uniformly
when the plate or shell thickness parameter approaches zero.

It is well known that standard finite element discretisations of the Reissner–
Mindlin plate equations do not converge uniformly with respect to the plate
thickness [5, 6], which is often known as shear or membrane locking. Therefore,
most of the finite element methods which converge uniformly for the Reissner–
Mindlin plate equations are based on mixed finite element methods [1, 3, 4,
6, 12, 16, 17].
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The mitc (Mixed Interpolated Tensorial Components) technique, which is
based on using a reduction operator, is one of the most popular finite element
techniques [11, 18]. Although the mitc technique is often analysed as a
mixed finite element approach for the Reissner–Mindlin plate equations, the
reduction operator of the mitc technique enables a positive definite finite
element formulation. The reduction operator is a projection onto a finite
element space, and its stability and approximation property is crucial in the
analysis.

We propose an efficient finite element method to obtain a uniform approxima-
tion of the Reissner–Mindlin plate equations utilising the reduction operator
as proposed in the mitc technique. Our reduction operator is constructed by
using a biorthogonal system and is thus an oblique projection operator onto
the standard finite element space. A related approach using a biorthogonal
system has been previously proposed by Lamichhane [15]. This approach
of Lamichhane [15] does not use the mitc formulation and also involves
a complicated boundary modification procedure for the clamped boundary
condition. Our new approach does not involve a boundary modification and
has a simpler formulation than the earlier approach.

Section 2 briefly summarises the Reissner–Mindlin plate equations in a modi-
fied form as given by Arnold and Brezzi [1], and we propose a new constrained
minimisation formulation upon which the mitc technique is based. Section 3
describes our mitc finite element method based on a biorthogonal system.
Finally, we present some numerical results that show the performance of
the numerical scheme, in particular, that the numerical scheme converges
uniformly with plate thickness in Section 4.
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2 A mixed formulation for Reissner–Mindlin
plates

Let Ω ⊂ R2 be a bounded region with polygonal boundary. We use standard
notations for Sobolev spaces [6, 8], where L2(Ω) denotes the set of all square
integrable functions in the sense of Lebesgue. The norm on the Lebesgue
space L2(Ω) is defined as

‖u‖L2(Ω) =

√∫
Ω

u2 dx .

The standard Sobolev space H1(Ω) is the space of all square integrable
functions whose first-order partial derivatives are also square integrable:

H1(Ω) =

{
u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω), i = 1, 2

}
.

The norm on the Sobolev space H1(Ω) is defined as

‖u‖H1(Ω) =

√∫
Ω

u2 dx+

∫
Ω

‖∇u‖2 dx ,

where ‖ · ‖ is the standard Euclidean norm on R2. More details about these
norms are given by Braess [6] and Brenner and Scott [8]. We now introduce
the following vector Sobolev spaces for the variational formulation of the
Reissner–Mindlin plate problem:

H1(Ω) = [H1(Ω)]2, H1
0(Ω) = [H1

0(Ω)]2, and L2(Ω) = [L2(Ω)]2.

The norm on the spaces H1(Ω) and L2(Ω) have the same notation as the
spaces H1(Ω) and L2(Ω), respectively.

We consider the following formulation of the Reissner–Mindlin plate with
clamped boundary condition [1, 3, 12]. The Reissner–Mindlin plate problem
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is to find the transverse displacement of the mid-plane section Ω of the
plate denoted by u and the rotation φ of the transverse normal vector.
The transverse displacement of the mid-plane section Ω of the plate is the
displacement along the z-direction of the plate, as shown in the bottom panel
of Figure 1. Using the modification proposed by Arnold and Brezzi [1] the
Reissner–Mindlin problem is to find (φ,u) ∈ H1

0(Ω)×H1
0(Ω) such that

a(φ,u;ψ, v) = `(v), (ψ, v) ∈ H1
0(Ω)×H1

0(Ω) , (1)

where

a(φ,u;ψ, v) =

∫
Ω

Cε(φ) : ε(ψ)dx+ λ

∫
Ω

(φ−∇u) · (ψ−∇v)dx

+
λ(1− t2)

t2

∫
Ω

(φ−∇u) · (ψ−∇v)dx , (2)

and
`(v) =

∫
Ω

g vdx .

Here t < 1 is the plate thickness, λ is a material constant depending on
Young’s modulus E and Poisson’s ratio ν as

λ =
5E

12(1+ ν)
,

and g is the body force. Moreover, ε(φ) is the symmetric part of the gradient,

ε(φ) =
∇φ+ [∇φ]T

2
,

and C is the fourth-order elasticity tensor

Cd =
E

12(1− ν2)
[(ν trd)1+ (1− ν) d] , d ∈ [L2(Ω)]2×2 ,

where 1 is the second-order identity tensor and trd is the trace of the symmet-
ric tensor d. Since the bilinear form a(·, ·) is continuous and coercive [1, 6],
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and the right-hand side `(·) is continuous if g ∈ H−1(Ω) , problem (1) has a
unique solution from the Lax–Milgram lemma.

We now recast the Reissner–Mindlin problem as a minimisation problem of
finding (φ,u) ∈ H1

0(Ω)×H1
0(Ω) such that

(φ,u) = argmin
(ψ,v)∈H1

0(Ω)×H1
0(Ω)

1
2
a(ψ, v;ψ, v) − `(v) .

Constrained minimisation formulation

Introducing a new unknown

ζ =

√
λ(1− t2)

t
(φ−∇u) ∈ L2(Ω),

then as shown by Braess [6] we minimize the functional

J(φ,u, ζ) =
1

2

[
A(φ,u) +

∫
Ω

ζ · ζdx
]
− `(u) , (3)

over H1
0(Ω)×H1

0(Ω) with

A(φ,u) =

∫
Ω

Cε(φ) : ε(φ)dx+ λ

∫
Ω

(φ−∇u) · (φ−∇u)dx

subject to the constraint∫
Ω

ζ · ηdx =

√
λ(1− t2)

t

∫
Ω

(φ−∇u) · ηdx, η ∈ L2(Ω) . (4)

The main benefit of using this modified formulation proposed by Arnold and
Brezzi [1] is that the bilinear form A(·, ·) satisfies the coercivity condition

A(φ,u) > C
(
‖φ‖2H1(Ω) + ‖u‖2H1(Ω)

)
on the whole space H1

0(Ω) × H1
0(Ω) , which is not true for the original

formulation [6].
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3 Finite element discretisation

We consider a quasi-uniform triangulation Th of the polygonal domain Ω
with mesh-size h , where Th consists of triangles or parallelograms. Given a
triangulation Th, we introduce the standard linear finite element space

Kh := {v ∈ H1(Ω) : v|T ∈ P1(T) , T ∈ Th} ,

and let Sh := H1
0(Ω) ∩ Kh . We use the finite element space Sh for the

transverse displacement and Vh := [Sh]
2 for the rotation.

In order to construct the reduction operator for the mitc element we con-
struct another piecewise polynomial space Mh , where the basis functions
{µ1,µ2, . . . ,µn} of Mh and the basis functions {ϕ1,ϕ2, . . . ,ϕn} of Kh form a
biorthogonal system so that∫

Ω

µi ϕj dx = cjδij , 1 6 i, j 6 n , (5)

where n := dimMh = dimKh , δij is the Kronecker symbol, and cj is a
nonzero scaling factor. We construct local basis functions [13, 14] for Mh on
the reference triangle T̂ so that for the reference triangle T̂ := {(x,y) : 0 6
x, 0 6 y, x+ y 6 1} we have three vertex basis functions

µ̂1 := 3− 4x− 4y , µ̂2 := 4x− 1 , µ̂3 := 4y− 1 .

Using the main idea of mitc elements [18], we introduce a reduction operator
Rh : L2(Ω)→ Sh defined as∫

Ω

Rhv µh dx =

∫
Ω

v µh dx , µh ∈Mh . (6)

Due to the biorthogonality relation the application of the reduction operator
Rh to a function v ∈ L2(Ω) has a closed form representation as

Rhv =

n∑
i=1

∫
Ω
µi v dx

ci
ϕi .
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This expression is also useful for the numerical implementation.

The reduction operator Rh is a quasi-projection operator having the properties
listed in the following lemma. In the following lemma, we use a generic
constant C , which takes different values at different places but is always
independent of the mesh-size h .

Lemma 1. Let Rh : L2(Ω)→ Sh be defined by (6). Then Rh has the following
properties.

1. Stability in L2-norm: Since dimMh = dimSh , if v ∈ L2(Ω) then

‖Rhv‖L2(Ω) 6 C‖v‖L2(Ω) . (7)

2. Stability in H1-norm: Similarly, if v ∈ H1(Ω) then

‖Rhv‖H1(Ω) 6 C‖v‖H1(Ω) . (8)

3. Approximation property: If v ∈ Hs+1(Ω) and 0 < s 6 1 then{
‖v− Rhv‖L2(Ω) 6 Ch1+s|v|Hs+1(Ω) ,
‖v− Rhv‖H1(Ω) 6 Chs|v|Hs+1(Ω) .

(9)

Kim et al. [13] and Lamichhane [14] proved this lemma, where Rh is introduced
as the mortar projection operator. The definition of the Sobolev space Hs(Ω)
for s > 0 and its associated norm ‖ ·‖Hs(Ω) are given by Brenner and Scott [8].

A new finite element method

Using the mitc technique with the reduction operator Rh our finite element
method for the Reissner–Mindlin problem is to find (φh,uh) ∈ Vh×Sh such
that

ah(φh,uh;ψh, vh) = `(vh), (ψh, vh) ∈ Vh × Sh , (10)
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where

ah(φh,uh;ψh, vh) =

∫
Ω

Cε(φh) : ε(ψh)dx

+ λ

∫
Ω

(φh −∇uh) · (ψh −∇vh)dx

+
λ(1− t2)

t2

∫
Ω

Rh(φh −∇uh) · Rh(ψh −∇vh)dx .

(11)

Remark 2. Working with Vh ⊂ H1(Ω) , Sh ⊂ H1
0(Ω) and [Mh]

2 ⊂ L2(Ω)
in (4), for ζh ∈ Kh then∫

Ω

ζh · ηh dx =

√
λ(1− t2)

t

∫
Ω

(φh −∇uh) · ηh dx, ηh ∈ [Mh]
2 , (12)

which yields

ζh =

√
λ(1− t2)

t
Rh(φh −∇uh) .

Since Rh is a projection operator onto Vh , we write

Rh(φh −∇uh) = φh − Rh∇uh .

Since uh is piecewise linear, ∇uh becomes a piecewise constant vector function
with respect to the underlying mesh Th . Then Rh∇uh is the projection of
this piecewise constant vector function back to the piecewise linear vector
function.

Enriching the finite element space with bubble functions

The above finite element method is similar to the P1-P1 mixed finite element
approach for the Stokes equations. To obtain stability the P1-P1 mixed finite
element approach is often modified by enriching the finite element space
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for the velocity with the space of bubble functions [2]. In the case of the
Reissner–Mindlin plate equations the space of transverse displacement is
enriched with the bubble functions [1, 15]. Following similar lines we compare
the above finite element approach with the method where the finite element
space for the transverse displacement field is enriched with the space of bubble
functions

Bh :=

{
bT ∈ P3(T) : bT |∂T = 0 ,

∫
T

bT dx > 0, T ∈ Th

}
,

and P3(T) is the space of cubic polynomials in T . The bubble function on an
element T is defined as

bT (x) = cb

3∏
i=1

λT i(x),

where λT i(x) are the barycentric coordinates of the element T associated with
vertices xT i of T , i = 1, 2, 3 , and the constant cb is chosen in such a way that
the value of bT at the barycentre of T is one.

The new finite element space for the transverse displacement u is SBh = Sh⊕Bh ,
whereas the finite element space for the rotation φ is the same as before.
Thus the problem is to find (φh,uh) ∈ Vh × SBh such that

ah(φh,uh;ψh, vh) = `(vh) , (ψh, vh) ∈ Vh × SBh , (13)

where ah(·, ·) is defined by (11).

Existence and uniqueness of solution

Since Vh ⊂ H1
0(Ω) and Sh and SBh both are subsets of H1

0(Ω) , the bilinear
form ah(·, ·) and the linear form `(·) both are continuous. Moreover, indepen-
dent of whether (φh,uh) ∈ Vh × Sh or (φh,uh) ∈ Vh × SBh, the bilinear
form ah(·, ·) satisfies the coercivity condition [1] :

ah(φh,uh;φh,uh) > C
(
‖φh‖2H1(Ω) + ‖uh‖2H1(Ω)

)
.
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Hence both discrete problems of solving (10) or (13) have unique solutions.

For comparison we also consider the standard approach to discretise the
Reissner–Mindlin plate equations, namely, find (φh,uh) ∈ Vh×Sh such that

a(φh,uh;ψh, vh) = `(vh) , (ψh, vh) ∈ Vh × Sh , (14)

where a(·, ·) is defined by (2). In the standard approach a(·, ·) is different
from ah(·, ·) in both mitc approaches, and it does not involve the reduction
operator Rh in contrast to the mitc approach.

Although a detailed theoretical convergence study is outside the scope of this
short communication, we expect the following asymptotic convergence rates
for the L2- and H1-norms of the transverse displacement and rotation:

‖u− uh‖L2(Ω) = O(h
2), ‖u− uh‖H1(Ω) = O(h),

‖φ−φh‖L2(Ω) = O(h
2), ‖φ−φh‖H1(Ω) = O(h).

Here f = O(hk) means there exists a mesh-independent constant C such that
f 6 Chk .

4 Numerical results

In this section we demonstrate the performance of our numerical methods
in two selected examples. We consider three finite element methods: the
standard approach given by (14), the approach with the reduction operator
but without bubble functions (mitc without bubble functions) given by (10),
and the approach with the reduction operator and bubble functions (mitc
with bubble functions) given by (13). We used a simple direct solver based on
Gaussian elimination to solve the arising linear systems of equations. However,
since the arising system is symmetric, an efficient iterative solution technique
could be applied [7, 10]. The computational cost for the standard approach
and the mitc approach without bubble functions is the same, whereas the
mitc approach with bubble functions has more degrees of freedom and
therefore, is computationally more expensive than the other two approaches.
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Figure 1: Initial mesh for Example 1 and 2 (top), and solution for Example 2
(bottom).
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Example 1 Our first numerical example is taken from Chinosi et al. [9],
where the exact solution for the transverse displacement is given by

u(x,y) =
2 t2[r(x,y) + r(y, x)]

5(ν− 1)
+
x3 y3 (x− 1)3 (y− 1)3

3

with
r(x,y) = xy3 (x− 1) (y− 1)3

(
5 x2 − 5 x+ 1

)
,

and exact solutions for two components of rotation are

φ1(x,y) = x2 y3 (2 x− 1) (x− 1)2 (y− 1)3,

φ2(x,y) = x3 y2 (2y− 1) (x− 1)3 (y− 1)2 .

We set t = 0.001 so that the plate thickness is sufficiently small. We also
used the Young’s modulus and Poisson’s ratio as E = 1000N/mm2 ; ν = 0.3 .
We have initialized the triangulations with 32 elements as shown in the top
panel of Figure 1 and uniformly refined the triangulations to compute errors
in various norms. Figure 2 and Figure 3 shows the L2 and H1 errors for
the transverse displacement and rotation vector for all three finite element
methods. From these figures both mitc finite element approaches yield
convergence of O(h2) for the errors in the L2-norm and of O(h) for the errors
in the H1-norm for both the transverse displacement and rotation, whereas
the standard approach shows very poor convergence. Also, the mitc approach
without bubble functions yield lower errors than the mitc approach with
bubble functions. This is expected as bubble functions do not improve the
approximation of the finite element space.

Example 2 This is a well-known classical numerical example [20] for a
clamped plate, which tests numerical schemes for a bending dominated
situation. A thin plate of dimension 2mm× 2mm× 0.01mm is considered.
The plate is clamped along the complete boundary, and it is subjected to
a uniformly distributed pressure of 100N/mm2 on the top surface in the
z-direction [19]. A linear elastic material is considered with Young’s modulus
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Figure 2: L2 errors (top) and H1 errors (bottom) versus the number of
elements for the transverse displacement u of Example 1.
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Figure 3: L2 errors (top) and H1 errors (bottom) versus the number of
elements for the rotation φ of Example 1.
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E = 1.7472 × 107 N/mm2 and Poisson’s ratio ν = 0.3 . Figure 1 shows the
initial triangulation and the deformation of the plate. We also plotted the
vertical displacement of the mid-point of the plate in the top panel of Figure 4.
Both mitc approaches converge to the exact solution rapidly, whereas the
standard approach has very slow convergence.

In the second part, we keep the uniform mesh with 2048 elements and compute
the vertical displacement at the mid-point of the plate using different thickness
measurements of the plate. The bottom panel of Figure 4 shows the numerical
results with different finite element schemes. The standard scheme locks when
the plate thickness gets smaller, whereas both mitc schemes show good
convergence to the correct solution.

5 Conclusion

We constructed an efficient reduction operator based on a biorthogonal sys-
tem for the mitc element method of Reissner–Mindlin plate equations. The
numerical results demonstrate that the proposed method has uniform con-
vergence with respect to the plate thickness. A very important future step
will be to prove the uniform convergence of both finite element schemes with
respect to the plate thickness.
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