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Computation of changes in explosive weather
systems during the 20th century
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Abstract

We present a new computational technique for extracting growing
weather modes of different frequencies and growth rates from instan-
taneous six hourly observed atmospheric data. The methodology is
applied to examine the changes in the statistics of growing storms and
extreme weather events between the mid and late 20th century. The
structures of weather modes in different frequency and growth rate
bands are determined from the leading (maximum variance) eigenvec-
tors of the associated covariance matrices. A matrix stochastic model is
also fitted to the data, with the associated leading eigenvectors related
to the dynamical developments.
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1 Introduction

Recent changes in the mean circulation patterns of the southern hemisphere
(SH) have had a dramatic effect on storm development and rainfall across
parts of Australia [4, 5, 7|. There was a 20% decrease in winter rainfall in
southwest Western Australia (SWWA) since the 1970s. During the peak of the
Australian Millennium Drought (AMD), between 1997 and 2006, south-eastern
Australia experienced the most persistent rainfall deficit since the start of the
20th century [7]. Primary causes of the drying of SWWA during the AMD were
found to be a reduction in the growth rates of leading storm track modes and
a deflection of some storms south of the Australian continent [4, 5, 6]. The
role of extra tropical cyclogenesis in the rainfall reduction was established
by solving large eigenvalue-eigenvector problems for the leading stormtrack
modes in a primitive equation instability model [4, 5, 6, 7]. These were
solved using both direct and Arnoldi-Krylov subspace reduction methods [5].
As well it was shown that a simple diagnostic, the Phillips Criterion, which
measures the vertical wind shear and the static stability (vertical potential
temperature shear), could be used to understand broad features of the changes.
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The peak SH jet stream was found to have reduced by nearly 20% since the
1970s. The instability calculations capture the average change in growth rates
of leading modes over given long time periods, but do not give information
on extreme events or on the statistics of change in growth rates and the
number of associated growing storms. Here we develop a new method for
answering these questions by calculating the growing storm track disturbances
directly from the 6 hourly National Centers for Ensemble Prediction (NCEP)
reanalysed observed dataset of atmospheric flows.

We begin this article by outlining the process by which data is filtered to
calculate the growth rates of storm tracks. In Section 3 statistical methods are
employed to examine the validity of this filtering process. A new computational
technique is then introduced in Section 4 using realistic atmospheric flows from
observational reanalysis data to provide statistics about growing disturbances.
We apply our method to a case study of changes in storm development
statistics during the AMD compared with the earlier 20 year period (1949
1968) and draw comparisons with previous work mentioned above. Concluding
remarks and discussion on possible future studies are presented in Section 5.

2 Datasets and high pass filtering

We use the 6 hourly NCEP reanalysis data for determining changes in growing
(and decaying) storms during the 20th century. Firstly, the annual cycle
is removed by subtracting the average of a ten day running mean over the
years of interest from the instantaneous data. Secondly, the data is filtered
with a high pass filter that only accepts periods less than 4 days, which
are typical of the storms of interest. The high pass filter is determined by:
Ru(w) = 1—Rp(w), where w is the angular frequency and the low pass filter,
Ry , is constructed by using a symmetric running mean shaped by the sinc
function. Thus, if the input timeseries is X(t), where t is time, the new low
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pass time series Y(t) is given by Baxter and King [1]

K
= Y CX(t+kAt), (1)

k=—K

where C_y = Cy with C, = 1/(km)sin(k@) and Cy = /7, where @ is the
cutoff angular frequency. For a low pass filter that accepts periods greater
than 4 days and with a time step of At = 6 hours we have & = 7/8day .

When the chosen number of frequency components, K, is too small then
unintended frequencies will leak and pollute the filtered data. In the next
section we experiment with increasing K and find a sufficiently sharp filter.
For subsequent analysis, our streamfunction dataset is represented in terms
of spherical harmonics, where m is the zonal and n the total wavenumber,

YA, t) ZZ\ymn )P ()et ™ (2)

Here W_1n(t) = Wi . (t) where x denotes complex conjugation, A is the
longitude, p is the sine of the latitude and P*(p) are Legendre functions.

3 POPs and EOFs

In this section we firstly obtain the leading storm track patterns associated
with the complete high pass filtered dataset of Section 2. We fit a linear
stochastic model to the data, of the form

dx

pr = Mx(t) +£(t), (3)

where x is the column vector of spherical harmonic spectral coefficients W,
n (2). The matrix M is to be determined from the data and f(t) represents
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noise. Since our data is sampled every At = 6 hours, we estimate the stability
matrix M through the associated finite-difference equation

x(t+ At) = (I+ AtM)x(t) + Atf(t), (4)

where I is the unit matrix. The estimate of M that minimises the noise is
then given through Gauss’ theorem of least squares [3] as

M = [(x(t+ At)x" (1)) (x(t)x" (1)) —I] (At) ", (5)

where the 4 superscript denotes the Hermitian conjugate, and angular brackets
denote time means. The covariance of the noise (not required here) is given in
(2.4) of the paper of Frederiksen and Branstator [3|. The empirical orthogonal
functions (EOFs) are the eigenvectors of (x(t)x*(t)) while the empirical
normal modes or principal oscillation patterns (POPs) are the eigenvectors
of M. To calculate the POPs, we assume the perturbations have a time
dependence e "'t Here w = w, + iw; is the complex angular frequency,
w; the frequency and w; the growth rate. This then results in the system of
eigenvalue-eigenvector equations

—iwe = Me, (6)

where e is the column vector consisting of spherical harmonic spectral co-
efficients of the field variables and M is the dynamical matrix in (5). A
rhomboidal R = 15 truncation is used in which the zonal wave number
m = —15,...,15 and the total wave number n = |m|,|/m|+1,...,|m|+ 15
giving a total of N = 496 pOPs. This corresponds to a resolution of 750 km
by 500 km in longitude by latitude at 30°S, and is adequate for resolving the
leading synoptic weather modes and lower frequency modes of variability.

The POPs are sustained by the random forcing, and decay in its absence, so
that the stationary time series can be reconstructed. The EOFs, eigenvectors
of the covariance matrix, determine the variance of the fluctuations explained.

The leading EOF in Figure 1(a) is the maximum variance eigenvector and
illustrates the familiar wave train pattern we expect to see for storm track
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Figure 1: SH 1949-1968 leading (a) EOF and (b) POP, and (¢) EOF1 and (d)
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propagation upstream and over Australia. The leading POPs are those with the
longest damping times. The leading POP, Figure 1(b), shows a similar wave
train pattern which propagates further across Australia and has frequency
w, = 0.285day ! with decay rate —w; = 0.522day '. We test the accuracy
of our filter by determining how well the frequencies are captured with varying
values of K. Our findings show that for K = 40 the filter leakage is insignificant,
with the first 60 modes having periods less than four days. The POPs have
the representation

\ymn 7\ w, t ZZ‘J) w.fiwy)tpr(u)eimk T+ .. (7)

where the mode index v =1,..., N c.c. denotes the complex conjugate and
a general disturbance can be represented in terms of the N (nondegenerate)
POPs or EOFs [2].

4 Computation of growing disturbances

Next we determine the statistics of growing storms, and their decadal changes,
for different growth rate (and decay rate) bands from the high pass filtered
dataset in Section 2. We again assume a time dependence of the spectral
coefficient of the form e (™™t where w = w,(m,n) +iw;(m,n), so that

qj ( ) wmne mn)teflw r(mmn)t ) (8)

Then the growth rate w;(m,n) between t and t + At is determined by

\ymn(t + At) — wi(mm)Ate—iwr(m,n)At
1y?n‘r‘L(t) ’ (9)
wy(mm) = 1 W+ AY)
R At Yinn(t)
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We can also determine the frequency

5 ((¥mnltray
w-mn) =——ar
T At reran R <wmn(t+m)>

In our calculations of wi(m,n) we use a time step of At = 6 hours. The
covariances of weather systems in different growth rate bands are determined
directly from observed flows allowing the separation of decaying and growing
modes. The leading EOFs in each of the chosen growth rate bands are then
derived. Our focus is on midlatitude winter storm tracks and for this reason
we examine the meridional velocity EOFs during the early period (1949-1968)
for July at 850 hPa.

Figure 1(c) and Figure 1(d) show some of the leading EOFs of the most rapidly
growing storms with growth rate values greater than 0.8 day '. The first EOF
shows a pattern very similar to Figure la with a wave train pattern across
the Southern Ocean between Africa and Australia. The second EOF (not
shown) also has a similar pattern, but is phase shifted. The third EOF has
an extensive wave train pattern which travels across the whole hemisphere.
The leading EOFs for the period (1997-2006) have very similar structures.
When we compare Figure 1d with that from the primitive equation instability
model from Figure 3 in the paper by Frederiksen et al. [6], we find a similar
wave train pattern which propagates eastward over Australia and into the
South Pacific.

Next, we calculate the standard deviation of the disturbance streamfunction
from each of the covariance matrices of chosen growth rate bands. Figure 2
shows differences in six hourly evolved standard deviations of streamfunction
at 850 hPa for July between the period during the AMD (1997-2006) and
the earlier time period (1949-1968). By using observational reanalysis data
instead of parameterised model data, we are able to composite snapshots of
events with realistic values of large growth rates. Undoubtedly, as storms
grow they must also decay with time, but this happens at varying rates.
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Figure 2(d) shows that during the AMD fewer storms formed rapidly in the
Australian region, however not all these storms decayed rapidly (Figure 2(a)).

Our results broadly agree with those from the instability model with an
expected increase of the onset of storms along the polar jet during the later
period of the AMD. Our fastest growing modes also show a reduction over
Australia during the AMD, in particular over the southern and south-eastern
regions and tracking towards New Zealand. This is consistent with the decline
in number of occurrences of low pressure systems known as East Coast Lows
that are responsible for bringing widespread rainfall along the east coast of
Australia during winter [5].

The instability calculations of previous studies are known to underestimate the
number of extremes for a 20 year July average with a maximum growth rate
of 0.423 day ' during 1949-1968. The advantage of our method is its ability
to analyse realistic flow data to discriminate between slowly growing and fast
growing modes that are more likely to result in stronger storm activity. A
range of statistics about growing disturbances of a particular frequency in
a given location will in turn provide us with information related to extreme
weather activity.

5 Conclusion

We have formulated a new computational technique for calculating realistic
growth rate values using observational reanalysis atmospheric data which
eliminates the constraints encountered from parameterised model simulations.
This technique allows a range of statistics to be calculated on growing dis-
turbances for a given frequency at any location. The focus of this study is
on changes during the period of the Australian Millennium Drought and the
behaviour of storm tracks in the southern hemisphere relating to Australian
rainfall. Principal component analysis methods are used to check that the
filtered cyclogenesis data does indeed have frequencies less than 4 days. We
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Figure 2: Difference in six hourly evolved standard deviation of July stream-
function in km? s~ ! at 850 hPa between the period during drought (1997-2006)
and the earlier period (1949-1968). (a) rapidly decaying, w; < —0.8day *,
(b) slowly decaying, —0.8 < w; < 0.0day ', (c) slowly growing, 0.0 < w; <
0.8day !, and (d) rapidly growing, w; > 0.8day '
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find our results to be consistent with previous modelling studies showing the
weakening of the subtropical jet during winter and its apparent poleward
shift, as well as the decline in number of extratropical storms including East
Coast Lows.

Detailed studies of storm formation means a better understanding of the
statistics of extreme weather events. Future development will include detection
of smaller scale features by increasing the resolution and the number of
growth rate bands. Further studies will include using different filters for
atmospheric blocking and intraseasonal variability patterns. This will be
extended to include covariability of rainfall with regions of high storm activity
plus projections of prolonged dry periods using data from skilful global climate
models.
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