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Abstract

Zero duality gap for nonconvex optimization problems requires the
use of a generalized Lagrangian function in the definition of the dual
problem. We analyze the situation in which the original problem is
associated with a sequence of Lagrangian functions, which in turn
defines a sequence of dual problems. Under a set of basic assumptions,
we prove that the generated sequence of optimal dual values converges
to the optimal primal value, and call the latter situation strong duality
for the sequence of Lagrangian functions. As an application of our
theory, we construct two sequences of augmented Lagrangians for
general equality constrained optimization problems in finite dimensions
which exhibit strong duality in this new sense.
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1 Introduction

We consider the minimization problem (P) :

minimize f0(x) subject to x in X0

where X is a metric space, the subset X0 ⊂ X is closed, and the function
f0 : X→ R∞ := R∪ {∞} is lower semicontinuous. Denote by d(·, ·) the metric
distance in X and let

MP := inf
x∈X0

f0(x),

be the optimal value of the problem (P) .

We do not assume convexity nor differentiability on problem (P) . In this
situation, a duality approach provides a convenient and elegant way of address-
ing the problem. Such an approach uses the information on problem (P) to
construct a new optimization problem, called the dual problem. The objective
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function of the dual problem is defined by means of a Lagrangian function.
In the present paper, a Lagrangian function is any function that reflects, in
a way which will be made precise later on, the properties of problem (P) .
Since a Lagrangian function can be chosen in many different ways, many dual
problems can be associated with the same problem (P) .

A right choice of Lagrangian is the one which results in good duality properties.
These properties are zero duality gap, which means that the primal problem (P)
has the same optimal value as the dual problem, and saddle point properties,
which means that a dual solution can provide a primal one. It is well known
that this approach is very powerful when the problem is convex, and in
this case the Lagrangian function is the classical (or ordinary) one. When
the problem is nonconvex, then the classical approach no longer works and
in general we will have a nonzero duality gap. In this case, a generalized
Lagrangian function is needed. Indeed, it has been shown that for a certain
family of augmented Lagrangians, both zero duality gap and saddle point
properties hold [18, Chapter 11]. These duality properties have been extended
to more general kinds of Lagrangians and more general frameworks (including
infinite dimensional spaces) [11, 13, 17, 19, 20]. Many solution techniques for
nonconvex optimization rely on the good duality properties of augmented
Lagrangians [2, 3, 4, 5, 6, 7, 8, 9, 14]. Most of these papers share the following
three features: (i) generate a primal-dual sequence at each iteration, (ii) under
mild assumptions, prove that every accumulation point of the primal sequence
is a solution of (P) , and (iii) the dual problem is convex. Part (iii) makes the
dual tractable and this allows one to devise algorithmic approaches which
under mild assumptions produce a primal solution. The tractability of the
dual problem, together with the good duality properties of the primal-dual
sequence, justify a duality approach for solving (P) , especially when the latter
is nonconvex.

In spite of these benefits, the dual problem has some disadvantages, such
as the lack of smoothness of the Lagrangian at points close to the solution
set, even when the problem data is smooth. This motivated Huang et
al. [17] to analyse suitable perturbations of a given Lagrangian function for



1 Introduction C96

nonlinear semidefinite programming problems. Moreover, if we use a duality
approach for solving the primal problem it is convenient to incorporate current
iterate information into the dual steps. This dynamical update allows one to
incorporate current information and has the potential to produce accelerated
versions of the duality scheme. Hence it makes sense to propose and analyse
a theoretical framework that deals with a sequence of Lagrangians, and a
sequence of dual problems. In the present paper, we consider the sequence of
optimal dual values induced by a sequence of dual problems, and develop a
general framework that ensures convergence of the optimal dual values to the
optimal primal value.

First, we establish this desirable ‘asymptotic’ property under a basic set
of assumptions (see Corollary 17). Second, we apply the theory to general
equality constrained problems in finite dimensions. Namely, we construct
two sequences of augmented Lagrangians for which strong duality (in the
asymptotic sense) holds.

To our knowledge, only Huang et al. [17] and Burachik and Yang [10] consider
a family of dual problems associated with a reference primal problem (P) .
Huang et al. study the case of the nonlinear semidefinite programming
problem, and define a family of perturbations {Lε}ε of a fixed Lagrangian L .
It is shown that the optimal dual values associated with Lε converge to the
optimal dual value induced by L when ε tends to zero. However, convergence
to the optimal primal value requires rather strong assumptions on the problem.
This motivated Burachik and Yang [10] to propose a more general analysis for
the family of perturbations {Lε}ε . Namely, using a set of basic assumptions,
Proposition 2 and Lemma 2.1 in the paper by Burachik and Yang establish
strong asymptotic duality, i.e.,

lim inf
ε↓0

MDε =MP, (1)

where MDε are the optimal values of the dual problems induced by Lε .
Burachik and Yang impose most of the hypothesis on the whole sequence
of Lagrangians. Since it may not be simple to check the hypotheses for the
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whole sequence, the present paper develops an alternative analysis in which
the hypotheses are imposed on a single function, namely the limit inferior of
the sequence of Lagrangians. Having in mind a future convergence analysis of
primal-dual techniques in which the Lagrangian function is updated at each
iteration, we consider a sequence of Lagrangians {Lk}k , instead of a family of
perturbations {Lε}ε .

In Section 2 we give the basic definitions related to the asymptotic behaviour
of the sequence of Lagrangians. We establish weak duality in the asymptotic
sense (see Corollary 7). Strong asymptotic duality in the sense of (1) is
established in Corollary 17. Section 3 is devoted to the prototypical example
of a general equality constrained problem, and presents two results involving
sequences of augmented Lagrangians. The first one establishes strong asymp-
totic duality when the objective function is bounded below, the augmenting
function has a valley at zero, and the constraints satisfy a global error bound.
The second result considers the case in which the objective function may be
unbounded below, a global error bound holds for the constraints, and the
augmenting function verifies an additional mild assumption. The last section,
Section 4, contains some concluding remarks.

2 Basic facts, definitions and assumptions

In our analysis, assume that we have a sequence {Lk}k∈N of Lagrangian
functions. We denote the nonempty set of dual variables by Λ . Each
Lk : X×Λ→ R∞ defines a dual function qk : Λ→ R ∪ {−∞} := R−∞ as

qk(λ) := inf
x∈X

Lk(x, λ), (2)

and the associated dual problem (Dk) as

max
λ∈Λ

qk(λ).

Let us denote as MDk the optimal value of (Dk) . The following definition
relates the sequence of dual problems with problem (P) .
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Definition 1. The sequence of Lagrangians {Lk}k∈N exhibits asymptotic
duality for (P) if

lim inf
k→∞ MDk >MP.

The sequence of Lagrangians {Lk}k∈N exhibits strong asymptotic duality for (P)
if

lim inf
k→∞ MDk =MP.

The sequence of Lagrangians {Lk}k∈N exhibits strong duality for (P) if the
limk→∞MDk ∈ R and, moreover

lim
k→∞MDk =MP.

2.1 A limiting Lagrangian and its dual value

Our aim in this section is to establish weak duality results, both in terms
of the sequence of optimal dual values, and in terms of the optimal value
induced by the limit inferior of the sequence of Lagrangians.

Definition 2. For a given sequence {Lk} of Lagrangians, the Lagrangian
induced by {Lk} is the function L : X×Λ→ R∪ {+∞}∪ {−∞} =: R±∞ defined
as

L(x, λ) := lim inf
k→∞ Lk(x, λ), for all x ∈ X, λ ∈ Λ. (3)

The Lagrangian L defined in (3) induces the dual function q : Λ → R−∞
given by q(λ) := infx∈X L(x, λ) with dual problem

sup
λ∈Λ

q(λ), (4)

and optimal dual value MD .
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2.2 Asymptotic weak duality

For deriving weak duality in the asymptotic sense, we need a Lagrangian
which does not ‘penalize’ feasible points. Namely, we will assume that the
Lagrangian verifies the following condition.

Definition 3. (i) H0(L) holds if

L(x, λ) 6 f0(x), for all x ∈ X0, λ ∈ Λ. (5)

For the sequence of Lagrangians, we relax the above inequality as follows.

(ii) H0(Lk) holds if there exists a sequence 0 6 rk ↓ 0 and k0 ∈ N such that

Lk(x, λ) 6 f0(x) + rk, for all k > k0, (6)

all x ∈ X0 and all λ ∈ Λ .

Remark 4. Consider the relationship between assumptions H0(L) and H0(Lk) .
If H0(L) holds then we can show that for every sequence 0 6 rk ↓ 0 there
exists an infinite set J := {p0 < p1 < p2 < . . . < pk <} ⊂ N such that

Lpk(x, λ) 6 f0(x) + rk, (7)

for all k > N . Indeed, since r1 > 0 we have from H0(L) that

L(x, λ) = lim inf
k→∞ Lk(x, λ) = sup

n
inf
k>n

Lk(x, λ) 6 f0(x) < f0(x) + r1.

So for every n ∈ N we have that

inf
k>n

Lk(x, λ) < f0(x) + r1. (8)

Take n := 1 in (8) to find p1 > 1 such that

Lp1
(x, λ) < f0(x) + r1.
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Now using (8) with n := p1 + 1 and r2 > 0 instead of r1 , gives a p2 > p1

such that Lp2
(x, λ) < f0(x) + r2 . We can thus define inductively a set J as

in (7). Therefore (6) holds for a subsequence of {Lk} . Now let us show that
condition H0(Lk) implies H0(L) . Indeed, by definition of L we can write

L(x, λ) = lim inf
k

Lk(x, λ) 6 f0(x) + lim inf
k

rk = f0(x),

for all x ∈ X0 , λ ∈ Λ .

Our next step is to establish weak duality in the asymptotic sense. Part
(i) of the next proposition follows similar steps as those in the paper by
Burachik and Yang [10, Lemma 2.1] and Theorem 4, and hence we omit it
here. However, part (ii) of the proposition is new.

Proposition 5. Let L and {Lk} be as in Definition 2. The following hold.

(i) If H0(L) holds, then we have

MD 6MP,

and for every sequence 0 6 rk ↓ 0 there exists J := {p0 < p1 < p2 <

. . . < pk <} ⊂ N such that

MDpk
6MP + rk, for all k > N.

In particular, we have

lim inf
k

MDk 6MP.

(ii) Moreover, if we have that for some k0 ∈ N , H0(Lk) holds for all k > k0 ,
then

lim sup
k

MDk 6MP.
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Proof: For the proof of part (i), see [10, Lemma 2.1] and Theorem 4. (ii)
For k > k0 we can write

MDk = sup
λ∈Λ

qk(λ)

= sup
λ∈Λ

inf
x∈X

Lk(x, λ)

6 sup
λ∈Λ

inf
x∈X0

Lk(x, λ)

= rk + inf
x∈X0

f0(x)

= rk +MP,

which gives
lim sup

k

MDk 6MP + lim sup
k

rk =MP.

♠

Remark 6. In our context, it is natural to assume that MP < ∞ . In this
situation, if H0(L) holds, then Proposition 5 yields MD <∞ and MDk <∞
for k in an infinite subset of N . Moreover, if H0(Lk) holds for k large enough,
then there exists k1 such that MDk <∞ for k > k1 .

The following corollary, which is new, shows how asymptotic duality implies
weak duality.

Corollary 7. Let L and {Lk} be as in Definition 2. The following hold.

(i) If H0(L) holds and the sequence of Lagrangians exhibits asymptotic
duality for (P) , then it verifies that

MD 6 lim inf
k

MDk =MP.

(ii) Moreover, if we have that for some k0 ∈ N , H0(Lk) holds for all Lk with
k > k0 , then

MD 6 lim
k
MDk =MP.
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Proof: (i) From Proposition 5 and the asymptotic duality assumption,

lim inf
k

MDk 6MP 6 lim inf
k

MDk ,

which readily gives the equality. The inequality follows from Proposition 5.
Statement (ii) follows from the second part of Proposition 5, which yields

lim sup
k

MDk 6MP 6 lim inf
k

MDk ,

which readily implies the existence of the limit. ♠

2.3 Assumptions for asymptotic duality

The previous section establishes weak duality under the assumption of asymp-
totic duality. In this section we study the conditions under which asymptotic
duality holds. Namely, we consider an assumption (see H1 below), which
turns out to be not only sufficient but also necessary for asymptotic duality to
hold. A version of this assumption for a single Lagrangian was first introduced
by Burachik and Rubinov [12], while the version for a family of Lagrangians
was considered by Burachik and Yang [10].

In contrast with the analysis of the previous section, which considers as-
sumption H0 describing how our Lagrangian functions should behave over
the constraint set X0 , we now impose an assumption that takes care of the
behaviour of the Lagrangians outside the constraint set.

In what follows we will always assume that MP <∞ and fix δ > 0 . We will
use the set

X(δ) := {x ∈ X : d(x,X0) < δ}.

Definition 8. Let Λ0 ⊂ Λ , then
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(i) H1(Λ0) holds for L if for all α < MP and all δ > 0 , the inequality

sup
λ∈Λ0

[
inf

x 6∈X(δ)
L(x, λ)

]
> α,

holds. We refer to this as H1(Λ0,L) holds.

(ii) H1(Λ0) holds for {Lk} if for all α < MP and for all δ > 0 , there exists
k0 ∈ N such that the inequality

sup
λ∈Λ0

[
inf

x 6∈X(δ)
Lk(x, λ)

]
> α,

holds for all k > k0 . We refer to this as H1(Λ0,Lk) holds for k large
enough.

Remark 9. Assumption H1 may appear artificial. In order to justify its use,
we prove that it is in fact necessary for zero duality gap to hold. Moreover, it
is also necessary for the family {Lk} to exhibit asymptotic duality. The proof
of part (i) in the proposition below follows similar steps to those of Burachik
and Rubinov [12, Theorem 2.1], which has stronger assumptions than those
used here. Namely, it assumes zero duality gap and the condition H0 . Since
statement (i) is still true without these assumptions, we include its proof
here. Regarding part (ii), this follows similar steps as those of Burachik and
Yang [10, Proposition 1], and thus we omit its proof here.

Proposition 10. Assume there exists Λ0 ⊂ Λ such that

MD = sup
λ∈Λ0

q(λ) = sup
λ∈Λ0

qk(λ), (9)

for all k ∈ N . The following hold:

(i) If MP 6MD then we must have that H1(Λ0) holds for L .

(ii) If the sequence {Lk} exhibits asymptotic duality for (P) , then we must
have that H1(Λ0) holds for {Lk} .
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Proof: (i) Assume that MP 6 MD . We claim that H1(Λ0) holds for L .
Indeed, for any δ > 0 , let Q(λ, δ) := inf

{x∈X :d(x,X0)>δ}
L(x, λ) . We can write

MP 6 MD

= sup
λ∈Λ0

q(λ)

= sup
λ∈Λ0

inf
x∈X

L(x, λ)

6 sup
λ∈Λ0

inf
{x∈X :d(x,X0)>δ}

L(x, λ)

= sup
λ∈Λ0

Q(λ, δ), (10)

where we used the definition of MD in the first equality, the definition of q
in the second equality, and the definition of Q in the last equality. If H1(Λ0)
does not hold for L , there exist α0 < MP and δ0 > 0 such that

sup
λ∈Λ0

Q(λ, δ0) 6 α0.

Combining this expression with (10) for δ := δ0 we have

MP 6 sup
λ∈Λ0

Q(λ, δ0) 6 α0,

which contradicts the assumption that MP > α0 . Hence the claim is true
and H1(Λ0) holds for L . For the proof of part (ii) see the paper by Burachik
and Yang [10, Proposition 1]. ♠

Remark 11. If for every fixed λ ∈ Λ0 the functions Lk(·, λ) are minorized
by L(·, λ) on X\X0 , then it directly follows from the definitions that H1(Λ0,L)
implies H1(Λ0,Lk) for k large enough. Namely, assume that

(i) H1(Λ0,L) holds.

(ii) There exists k0 ∈ N such that

L(x, λ) 6 Lk(x, λ), for all k > k0,

for every x 6∈ X0, λ ∈ Λ0 .
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In this situation, H1(Λ0,Lk) holds for k > k0 . Indeed, for all α < MP and
all δ > 0 , use (ii) to write, for k > k0 ,

sup
λ∈Λ0

[
inf

x 6∈X(δ)
Lk(x, λ)

]
> sup
λ∈Λ0

[
inf

x 6∈X(δ)
L(x, λ)

]
> α.

We now consider the following level-boundedness assumption on L .

H2(Λ0,L) : For all α < MP there exists r̂ > 0 and λ̂ ∈ Λ0 such that the set

{x ∈ X(r̂) : L(x, λ̂) 6 α},

is compact.

Our next assumption is taken from [10].

H3(Λ0,L) : There exists Λ0 ⊂ Λ such that

f0(x) 6 L(x, λ), (11)

for all x ∈ X, λ ∈ Λ0 .
Remark 12. If the inequality in (11) is strict, then, from the definition of L ,
we can find l0 ∈ N such that H3(Λ0,Lk) holds for all k > l0 . Otherwise, the
most we can say is that for every ε > 0 there exists k0 ∈ N such that

f0(x) 6 Lk(x, λ) + ε,

for every k > k0 . On the other hand, if H3(Λ0,Lk) holds for k large enough,
then (11) holds.

Lemma 13. Assume that f0 is lower semicontinuous, and that H2(Λ0,L) and
H3(Λ0,L) hold. Then for every α < MP there exists r > 0 and λ ∈ Λ0 such
that

X(r) = {x ∈ X : d(x,X0) < r} ⊂ {x ∈ X : L(x, λ) > α}. (12)
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Proof: Assume that for some α1 < MP the inclusion is false for all r > 0 and
all λ ∈ Λ0 . For this given α1 < MP , take r̂ > 0 and λ̂ ∈ Λ0 as in H2(Λ0,L) .
In particular, the inclusion (12) will be false for rn := r̂/n > 0 and λ := λ̂ .
This implies the existence of a sequence {xn} such that

d(xn,X0) 6 r̂/n 6 r̂, and f0(xn) 6 L(xn, λ̂) 6 α1, (13)

where we used H3(Λ0,L) in the right-most expression. By (13) and H2 ,
the sequence {xn} has an accumulation point x̄ , which must belong to X0

because X0 is closed and d(xn,X0) tends to zero. Using (13) and the lower
semicontinuity of f0 we obtain f0(x̄) 6 α1 < MP , contradicting the fact that
x̄ ∈ X0 . Hence inclusion (12) must hold for some r > 0 and some λ ∈ Λ0 .

♠

Our next step is to prove that, under assumptions H1–H3 , the sequence {Lk}

exhibits asymptotic duality for (P) . The next proposition extends one of
Burachik and Yang [10, Proposition 2]. Indeed, our assumption H2 is less
restrictive that the one used by Burachik and Yang. Moreover, since the latter
is proved for a family {Lε}ε>0 Lagrangians, we adapt the proof to our case.
To reflect the penalty properties of the Lagrangian, and the fact that the dual
variables should be unbounded above, we introduce a special (albeit natural)
assumption on the structure of the set Λ0 , which is stated as follows. Our
examples in Section 3 will all verify this natural assumption (see Lemma 22(ii)
and Lemma 28(ii)).

Definition 14. We say that Λ0 is directed for L if for any pair of dual
variables λ1, λ2 ∈ Λ0 there exists λ3 ∈ Λ0 such that

max{L(x, λ1),L(x, λ2)} 6 L(x, λ3), for all x ∈ X.

Remark 15. As an illustration of Definition 14, we recall the augmented
Lagrangian given by Rockafellar and Wets [18, Definition 11.55]. Consider
an equality constrained problem (P) in which the constraint set X0 := {x ∈
Rn : h(x) = 0} is defined using a continuous function h : Rn → Rm.



2 Basic facts, definitions and assumptions C107

Consider also an augmenting function σ : Rm → R∞ such that minσ = 0
and argmin σ = {0} . For this case the set of dual variables is Λ := Rm ×R+ .
With a suitable duality parametrization, the augmented Lagrangian L :
Rn × [Rm × R+]→ R±∞ becomes

L(x, (u, c)) := f0(x) + cσ(h(x)) + 〈u,h(x)〉,

where 〈·, ·〉 is the scalar product in Rm. The set Λ0 := {0}× N ⊂ Λ is clearly
directed for L. Indeed, given (0,p), (0,q) ∈ {0}×N then let r := max{p,q} so
we have

max{L(x, (0,p)),L(x, (0,q))} = max{f0(x) + pσ(h(x)), f0(x) + qσ(h(x))}

= f0(x) + σ(h(x))max{p,q}

= f0(x) + rσ(h(x))

= L(x, (0, r)),

and the property of Definition 14 is satisfied.

Proposition 16. Consider a sequence {Lk} and L as in Definition 2. Let Λ0

be directed for L , as in Definition 14. Assume further that

(a) f0 is lower semicontinuous,

(b) H1(Λ0,L) holds, and there exists l0 such that L(x, λ) 6 Lk(x, λ) for all
k > l0 and all λ ∈ Λ0 ,

(c) H2(Λ0,L) holds, and

(d) H3(Λ0,L) holds.

Then asymptotic duality holds for {Lk} . Namely,

MP 6 lim inf
k→∞ MDk .

Proof: Assume the conclusion is not true. In this case there exists α1 such
that

lim inf
k→∞ MDk < α1 < MP.
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This yields the existence of a subsequence {kj}j∈N such that for all j ∈ N and

MDkj
< α1 < MP. (14)

By (a), (c), (d), and Lemma 13 for α := α1 , there exists r0 > 0 and λ0 ∈ Λ0

such that

X(r0) = {x ∈ X : d(x,X0) < r0} ⊂ {x ∈ X : L(x, λ0) > α1}. (15)

Using (b) for α := α1 < MP and δ =: r0 > 0 , we obtain the existence of
λ1 ∈ Λ0 such that

inf
x 6∈X(r0)

L(x, λ1) > α1. (16)

Using the directed property of Λ0 , there exists λ2 ∈ Λ0 such that

max{L(x, λ0),L(x, λ1)} 6 L(x, λ2), for all x ∈ X.

So we have

X(r0) = {x ∈ X : d(x,X0) < r0}

⊂ {x ∈ X : L(x, λ0) > α1}

⊂ {x ∈ X : L(x, λ2) > α1}. (17)

We also deduce from (16), the definition of λ2 and (b) that

inf
x 6∈X(r0)

Lkj(x, λ2) > inf
x 6∈X(r0)

L(x, λ2) > inf
x 6∈X(r0)

L(x, λ1) > α1, (18)

for kj > l0 . Assume that kj > l0 , then using (17) and (b) we have

qkj(λ2) 6MDkj
< α1 6 inf

x∈X(r0)
L(x, λ2) 6 inf

x∈X(r0)
Lkj(x, λ2). (19)

The above expressions implies that

MDkj
> qkj(λ2) = inf

x 6∈X(r0)
Lkj(x, λ2) > α1,

because (19) shows that the infimum value qkj(λ2) cannot be attained over
the set X(r0) . The above expression contradicts (14), and hence asymptotic
duality holds. ♠
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2.4 Strong asymptotic duality

Here we study conditions that ensure

lim inf
k

MDk =MD =MP. (20)

Corollary 17. Consider a sequence {Lk} and L as in Definition 2. Assume
that all hypotheses of Proposition 16 hold. Then

(i) If we also have that H0(L) holds, then

MD = lim inf
k→∞ MDk =MP.

(ii) Moreover, if we have that for some k0 ∈ N , H0(Lk) holds for all k > k0 ,
then

lim
k→∞MDk =MD =MP.

Proof: By Proposition 16, asymptotic duality holds for {Lk} . Combine
this fact with Corollary 7(i) and assumption H0 to conclude that MD 6
lim infk→∞MDk =MP . Recall that

MD = sup
λ∈Λ

q(λ),

where L(x, λ) = lim infk→∞ Lk(x, λ) . To complete the proof, we need to prove
that MD >MP . Assume on the contrary that we have MD < γ < MP for
some γ . By Lemma 13, there exists r0 > 0 and λ0 ∈ Λ0 such that

X(r0) ⊂ {x : L(x, λ0) > γ}. (21)

Now using assumption H1(Λ0,L) with δ := r0 and α := γ provides a λ1 ∈ Λ0

such that
inf

x 6∈X(r0)
L(x, λ1) > γ. (22)
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As in the proof of Proposition 16, we use the directed property of Λ0 to find
λ2 ∈ Λ0 such that

max{L(x, λ0),L(x, λ1)} 6 L(x, λ2), for all x ∈ X.

Then we have

X(r0) = {x ∈ X : d(x,X0) < r0}

⊂ {x ∈ X : L(x, λ0) > γ}

⊂ {x ∈ X : L(x, λ2) > γ}. (23)

From (22) and the definition of λ2 we have

inf
x 6∈X(r0)

L(x, λ2) > inf
x 6∈X(r0)

L(x, λ1) > γ. (24)

Using (24) and (23) we can write

q(λ2) 6MD < γ 6 inf
x∈X(r0)

L(x, λ2). (25)

The above expression implies that the infimum value of q(λ2) cannot be
attained at points in X(r0) , namely,

MD > q(λ2) = inf
x 6∈X(r0)

L(x, λ2) > γ,

where we also used (24) in the last inequality. The above expression contradicts
the assumption onMD and hence we must haveMD >MP . This establishes
part (i). As for (ii), we apply Corollary 7(ii). Indeed, we know that we
have asymptotic duality. This fact, together with assumption H0(Lk) holding
for all k > k0 , implies that limk→∞MDk = MP . Since we already have
MD =MP , the proof is complete. ♠
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3 Equality constrained problems

In this section we construct sequences of augmented Lagrangians that verify
strong asymptotic duality for equality constrained problems. To establish our
claims we will apply the results of the previous section.

Consider the instance of problem (P) in which X = Rn with a norm ‖ · ‖ .
Let X0 := {x ∈ Rn | h(x) = 0} , with h : Rn → Rm a continuous function and
f0 : Rn → R∞ a lower semicontinuous function. Let σ : Rm → R∞ be such
that

σ(z) > 0 for all z ∈ Rm and σ(z) = 0 if and only if z = 0. (26)

The following additional assumption on σ is often used in the context of
augmented Lagrangians [11, 20].

Definition 18. We say that σ has a valley at 0 if for every δ > 0 we have
cδ = inf‖y‖>δ σ(y) > 0 .

The following is a well-known assumption in the literature [16].

Definition 19. We say that a global error bound holds for a function h :
Rn → Rm if there exists γ > 0 such that

d(x,X0) 6 γ‖h(x)‖,

for all x ∈ Rn.

Remark 20. For linear programming problems, a global error bound as in
Definition 19 holds by Hoffman’s lemma [15, Theorem 11.26].

We consider the following sequence of augmented Lagrangians.

Definition 21. Take Λ := Rm×R+ . For each k ∈ N , let Fk : Rm×Rm → R
be such that

Fk(0, z) = Fk(z, 0) = 0, (27)
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for all z ∈ Rm. For the sequence {Fk}k∈N and λ = (u, c) ∈ Rm × R+ , we
construct the sequence Lk : Rn ×Λ→ R∞ as follows

Lk(x, λ) := f0(x) + Fk(u,h(x)) + cσ(h(x)). (28)

The following simple lemma computes L over the set Λ0 := {0} × N , and
shows that the latter set is directed for L in the sense of Definition 14.

Lemma 22. The following hold for the sequence {Lk} defined in (28) and for
the set Λ0 := {0}× N .

(i) Assume that h is continuous. Then for all n ∈ N and all x ∈ Rn we
have

L(x, (0,n)) = f0(x) + nσ(h(x)).

(ii) Λ0 is directed for L .

Proof: (i) Definition 21 and (27) imply that, for all (0,n) ∈ Λ0 and every
x ∈ X we have

L(x, (0,n)) = lim inf
k

Lk(x, (0,n))

= f0(x) + nσ(h(x)) + lim inf
k

Fk(0,h(x))

= f0(x) + nσ(h(x)) = Lk(x, (0,n)), (29)

which proves (i). Statement (ii) follows as in Theorem 15. ♠

Proposition 23. Assume that f0 is lower semicontinuous and h is continuous.
Consider the set Λ0 := {(0,n) : n ∈ N} . The Lagrangian L and the
sequence {Lk} defined in (28) satisfy H0 and H3(Λ0) . Condition H1(Λ0) holds
for L and the sequence {Lk} if

(a) f0 is bounded below, i.e., there exists b0 ∈ R such that f0(x) > b0 for
all x ∈ X ,
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(b) σ has a valley at 0 , and

(c) a global error bound holds for h .

Proof: Let us first prove that H1(Λ0) holds for L and the sequence {Lk}

under (a)–(c). By (29) we have

L(x, (0,n)) = f0(x) + nσ(h(x)) = Lk(x, (0,n)),

so by Theorem 11 it is enough to show that H1(Λ0) holds for L . Assume
that (a)–(c) hold and H1(Λ0,L) does not hold. This implies the existence of
α0 < MP , δ0 > 0 , and a sequence {xn} ⊂ X with d(xn,X0) > δ0 such that

f0(xn) + nσ(h(xn)) 6 α0. (30)

We claim that the sequence {xn} cannot be bounded. Indeed, if there exists R0

such that ‖xn‖ 6 R0 then there exists a subsequence of {xn} , convergent
to some point x̄ such that ‖x̄‖ 6 R0 and d(x̄,X0) > δ0 . Without loss of
generality we still denote the convergent subsequence by {xn} . Since x̄ 6∈ X0

we must have that r̄ := ‖h(x̄)‖ > 0 . Since h is continuous for n large enough
we have that ‖h(xn)‖ > r̄/2 > 0 . Using the lower semicontinuity of f0 and
taking limits in (30) we have

α0 > f0(x̄) + lim inf
n

nσ(h(xn)) > b0 + cr̄/2 lim inf
n

n = +∞,

where we used (a), and (b) with δ := r̄/2 in Definition 18. The above
inequality entails a contradiction and hence we must have {xn} unbounded.
Using now assumption (c) there exists γ > 0 such that

‖h(xn)‖ >
d(xn,X0)

γ
>
δ0

γ
,

which, together with assumption (b) with δ := δ0/γ in Definition 18 yields

σ(h(xn)) > c(δ0/γ).



3 Equality constrained problems C114

Combining this inequality with assumption (a) and (30) again yields a contra-
diction. This proves that H1(Λ0,L) holds under assumptions (a)–(c). Hence
the statement on H1 has been proved. We proceed now to show H0 for L (and
for Lk). For x ∈ X0 , we have that h(x) = 0 and by (26–27)

L(x, λ) = Lk(x, λ) = f0(x) + Fk(u, 0) + cσ(0) = f0(x),

so H0 holds for L and all Lk . For every (0,n) ∈ Λ0 and every x ∈ X we have

f0(x) 6 f0(x) + nσ(h(x))

= f0(x) + Fk(0,h(x)) + nσ(h(x))

= Lk(x, (0,n))

= L(x, (0,n)),

where we used that Fk(0,h(x)) = 0 for every x ∈ X , and that σ(·) > 0 .
Hence,

f0(x) 6 lim inf
k

Lk(x, (0,n)) = L(x, (0,n)), (31)

which implies that H3(Λ0) holds for L and all Lk . ♠

The previous result readily implies strong asymptotic duality for (P) .

Corollary 24. Assume that the hypotheses of Proposition 23 hold. If H2(L)
holds, then the sequence {Lk} defined in (28) verifies

lim
k
MDk =MP =MD.

Proof: Let Λ0 := {(0,n) : n ∈ N} . Proposition 23 shows that the
sequence {Lk} and L verify H0 . It also establishes H1 and H3 for L and Lk .
It only remains to check that the set Λ0 is directed for L . This is precisely
Lemma 22(ii). The conclusion now follows from Corollary 17(ii). ♠
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Remark 25. For the equality constrained problem as formulated in this section
we can use a sequence of Lagrangians of the form

Lk(x, λ) := f0(x) + 〈u,Akh(x)〉+ cσ(h(x)), (32)

where {Ak} ∈ Rm×m is a sequence of symmetric matrices. This is a particular
case of Definition 21. As long asH2(L) and conditions (a)–(c) of Proposition 23
hold, the sequence of dual values will converge to the optimal primal value.
This choice is of interest if we want to emphasize different constraints at each
iteration. In this situation, the matrix Ak can be dynamically updated so
that only a subset of the constraints is considered at the iteration k .
Remark 26. Condition H2(L) can be enforced, for instance, if we know that (P)
has solutions in a given ball B[0,R] := {x ∈ Rn : ‖x‖ 6 R} . In this
case, in the formulation of (P) we can replace the constraint function h
by ĥ(x) := max{0, ‖h(x)‖, ‖x‖ − R} , which gives a compact constraint set
X̂0 := {x : ĥ(x) = 0} ⊂ B[0,R] . Then for every r > 0 , H2(L) trivially holds
because

X(r) = X̂0 + B[0, r],

which is compact as it is the Minkowski sum of two compact sets.

3.1 When f0 is not bounded below

Proposition 23 cannot be applied when the objective function f0 is linear,
because assumption (a) is not true. The following result applies to the case
of linear f0 . Recall that given a set C ⊂ Rm, the indicator function of the
set C is denoted by δC : Rm → R∞ := R ∪ {+∞} and defined as

δC(z) =

{
0 if z ∈ C,
+∞ otherwise.

Given a function g : Rm → R∞ , recall that the domain of g is the set
domg := {x ∈ Rn : g(x) < +∞} .
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For the analysis of this case, we use the following sequence of Lagrangians.
We assume that one feasible point is available, i.e., there is some x̂ ∈ X0 .

Definition 27. Assume x̂ ∈ X0 . Given k ∈ N , denote by B[0,k] := {y ∈
Rm : ‖y‖ 6 k} the closed ball of center 0 and radius k in Rm. Define
σk : Rm → R∞ as

σk(y) =

{
σ(y) if ‖y‖ 6 k,
+∞ otherwise, (33)

where σ is as in Definition 18. In other words, σk = σ+δB[0,k] , where δB[0,k] is
the indicator function of the set B[0,k] . To define our sequence of Lagrangians,
let Λ := Rm × R+ . For each k ∈ N and each λ = (u, c) ∈ Rm × R+ , let
Lk : Rn ×Λ→ R∞ be defined as follows

Lk(x, λ) := f0(x) + c ‖x− x̂‖σk(h(x)) + Fk(u,h(x)). (34)

The following simple lemma computes L over the set Λ0 := {0} × N , and
shows that the latter set is directed for L in the sense of Definition 14.

Lemma 28. The following hold for the sequence {Lk} defined in (34) and for
the set Λ0 := {0}× N .

(i) Assume that h is continuous. Then for all n ∈ N we have

L(x, (0,n)) = f0(x) + n ‖x− x̂‖σ(h(x)).

(ii) Λ0 is directed for L .

Proof: (i) Assume x ∈ Rn and n ∈ N . Since h is continuous ‖h(x)‖ ∈ R
and hence there exist (a unique) j(x) ∈ N such that

j(x) − 1 < ‖h(x)‖ 6 j(x).

Assume p ∈ N such that p > j(x) . Then h(x) ∈ B[0, j(x)] ⊂ B[0,p] and
hence σp(h(x)) = σ(h(x)) + δB[0,p](h(x)) = σ(h(x)) . Hence, for p > j(x) we
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have

inf
k>p

Lk(x, (0,n)) = f0(x) + n‖x− x̂‖σk(h(x)) = f0(x) + n‖x− x̂‖σ(h(x)).

If p < j(x) then by definition of j(x) we have that h(x) 6∈ B[0,p] and hence
σp(h(x)) = +∞ . Therefore, the infimum for k > p will not take into account
the values of k which are less than j(x) . Namely, for p < j(x)

inf
k>p

Lk(x, (0,n)) = inf
k>j(x)

Lk(x, (0,n)) = f0(x) + n‖x− x̂‖σ(h(x)).

Since in neither case the infk>p Lk(x, (0,n)) depends on p , we have

L(x, (0,n)) = sup
p

inf
k>p

Lk(x, (0,n)) = f0(x) + n‖x− x̂‖σ(h(x)).

For proving (ii), assume n,m ∈ N . Let p := max{n,m} . Then by part (i)

max{L(x, (0,n)),L(x, (0,m))} = f0(x) + ‖x− x̂‖σ(h(x))max{n,m}

= f0(x) + p‖x− x̂‖σ(h(x))
= L(x, (0,p)).

♠

Proposition 29. Assume that f0 is lower semicontinuous and h is continuous.
Consider the set Λ0 := {(0,n) : n ∈ N} . Then H0 holds for L and Lk for
all k . Also H3(Λ0,L) holds. Moreover, condition H1(Λ0) holds for L and the
sequence {Lk} if

(a) lim inf‖x‖→∞ f0(x)‖x‖
= b0 ∈ R ,

(b) A global error bound holds for h ,

(c) There exists a > 0 such that σ(z) > a‖z‖ for all z ∈ Rm.
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Proof: We start by proving H0 for L and Lk . Since σk(0) = 0 , for x ∈
X0 ∩ dom f0 by (26) and (27)

Lk(x, (u, c)) = f0(x) + Fk(u, 0) + c‖x− x̂‖σk(0) = f0(x) ∈ R.

If x ∈ X0 \ dom f0 then by definition of Lk we have Lk(x, λ) = f0(x) = +∞.
In all cases, Lk(x, λ) = f0(x) for all x ∈ X0, λ ∈ Λ . So H0 holds for all Lk .
Using the latter equality and the definition of L ,

L(x, λ) = lim inf
k

Lk(x, λ) := f0(x), for all x ∈ X0, λ ∈ Λ,

so H0 also holds for L . For checking H3 , we use Lemma 28(i) and that σ > 0
to write

L(x, (0,n)) = f0(x) + n‖x− x̂‖σ(h(x)) > f0(x),

for all x ∈ Rn. This shows that H3(Λ0,L) holds. By (33), σk > σ , therefore

Lk(x, ·) > L(x, ·), over the set Λ0. (35)

Hence, by Theorem 11, if H1(Λ0) holds for L , it will hold for all Lk’s. Let us
then check H1(Λ0,L) under (a)–(c). By Lemma 28(i) for all (0,n) ∈ Λ0 and
every x ∈ X

L(x, (0,n)) = f0(x) + n‖x− x̂‖σ(h(x)). (36)

Assume that H1(Λ0,L) does not hold. This implies the existence of α0 < MP ,
δ0 > 0 , and a sequence {xn} ⊂ X with d(xn,X0) > δ0 such that

f0(xn) + n‖xn − x̂‖σ(h(xn)) 6 α0. (37)

As in the proof of Proposition 23, we claim that the sequence {xn} is un-
bounded. Indeed, assume the sequence is bounded. Then it has a convergent
subsequence, which by simplicity we still denote as {xn} . Denote by x̄ the
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limit of this sequence. Using (b), (c), and the lower semicontinuity of f0

α0 > lim inf
n

[f0(xn) + n ‖xn − x̂‖σ(h(xn))]

> lim inf
n

[f0(xn) + na ‖xn − x̂‖ ‖h(xn)‖]

> lim inf
n

[f0(xn) + na ‖xn − x̂‖γd(xn,X0)]

> lim inf
n

[
f0(xn) + naγδ0

2
]

> f0(x̄) + aγδ0
2 lim inf

n
n

= +∞,

where we also used that ‖xn − x̂‖ > d(xn,X0) > δ0 . The above expression
entails a contradiction. Hence our claim is true and {xn} is unbounded. We
can assume that the whole sequence {‖xn‖} tends to infinity. So the sequence
{an} ⊂ R defined as

an :=
‖xn‖
‖xn − x̂‖

=
1

‖xn − x̂‖
‖xn‖

=
1∥∥∥∥ xn

‖xn‖
−

x̂

‖xn‖

∥∥∥∥ ,

tends to 1 when n→∞ . Hence, there exists n0 such that for all n > n0 we
have an < 2 . Using (37) and assumptions (a), (b) and (c) we can write, for
n > n0 ,

α0

‖xn − x̂‖
>

f0(xn)

‖xn − x̂‖
+ nσ(h(xn))

>
f0(xn)

‖xn‖
‖xn‖
‖xn − x̂‖

+ na ‖h(xn)‖

> b0 an + naγd(xn,X0)

> −|b0|an + naγδ0

> −2 |b0|+ naγδ0,

which is a contradiction because the left hand side tends to zero while the
right hand side tends to infinity. This proves that H1(Λ0,L) holds under
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assumptions (a)–(c). This, together with (35) and Theorem 11, show that H1

also holds for Lk . This completes the proof. ♠

The previous proposition readily implies strong asymptotic duality for (P)
for the case in which f0 is not bounded below.

Corollary 30. Assume that the hypotheses of Proposition 29 hold. If H2(L)
holds, then the sequence {Lk} defined in (34) verifies

lim
k
MDk =MP =MD.

Proof: The conclusion holds because, by Proposition 29, all assumptions of
Corollary 17(ii) hold for our sequence of Lagrangians. Indeed, Proposition 29
shows that H0 holds for Lk and L . It also establishes H1 and H3 for L .
Condition H1 holds for all Lk by (35) and Theorem 11. The only remaining
fact to check is that the set Λ0 is directed for L . This is precisely Lemma 28(ii).
The conclusion now follows from Corollary 2.2(ii). ♠

4 Conclusions

We have presented a duality approach based on a sequence of dual problems,
which, under certain basic assumptions, have optimal values converging to the
optimal primal value. This is a first step towards the development of primal-
dual schemes that admit a dynamic update of the Lagrangian function. We
reviewed the existing literature on asymptotic duality and presented specific
cases in which strong duality holds in the asymptotic sense. Asymptotic
properties can be useful for approximating optimal values or solutions of (P)
by using a suitable sequence of Lagrangians. Our future research will use
the theory presented here for solving specific families of nonconvex problems
(e.g., linear integer programming problems, polynomial optimization). For
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general nonconvex problems, good asymptotic properties can help in providing
new ways for approximating the solution. Namely, new convergence results
can be established for primal-dual techniques in which the search direction
used for solving the dual problem is updated by using a suitable sequence of
Lagrangians {Lk} .
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