
ANZIAM J. 48 (CTAC2006) pp.C645–C660, 2007 C645

A theory for the isolation of the complex
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Abstract

This article reports on the development of a new numerical method
for the separation of multiple interdependent nonlinear deformation
phenomena. Whilst conceivably applicable to other classes on non-
linear materials, the method proposed was developed specifically for
large strain nonlinear viscoelasticity. Characterized by a combination
of elastic and viscous deformation contributions, the corresponding
constitutive relationships become experimentally indeterminate when
both components of response are nonlinearly interdependent. The
theory presented here incorporates a methodology analogous to Clos-
est Point Projection of computational plasticity which is used like
a Newton type iterative solution for multiple, mutually dependent
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parameters. The proposed technique is shown to closely reproduce
the results seen from numerical simulations given prescribed nonlin-
ear elastic and viscous relationships. This is of particular benefit to
the accurate determination of material model coefficients.
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1 Introduction

A major limitation of complex constitutive theories arises from the extrac-
tion of model parameters from laboratory testing needed to allow meaning-
ful implementation. For hyperelastic materials such as rubbers, relatively
standardised parameter determination techniques have been developed using
optimisation algorithms such as that of Levenberg and Marquardt [11, for
example]. In such cases the total material test stress is related to total test
strain through the fit of a parametrised modulus. However, analogous tech-
niques for cases where inelastic evolution is present are largely absent from
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the literature. For a single Maxwell type viscoelastic element [9], in the one
dimensional case, a split of strain into elastic and inelastic components gives

ε = εe + εi . (1)

The elastic modulus E is then related to total stress σ and the elastic com-
ponent of strain εe by

σ = Eεe , (2)

while the viscosity η is related to the total stress σ and the inelastic compo-
nent of strain rate ε̇i by

ε̇i =
1

η
σ . (3)

This presents a problem resulting from the restrictions of standard tensile test
techniques. Through component isolation techniques (Brusselle–Dupend et
al. [3, 4]) it is possible to output from testing the viscoelastic element stress
and the total element strain. However, given such data, from the current
form of (1), (2) and (3), it is not possible to solve simultaneously for the
parameters E and η on a point by point basis. In addition, if E and η have
functional dependencies and three dimensionality, direct solution cannot be
achieved and so some iterative solution is required.

We present a new iterative approach to the calculation of model parame-
ters for 3D nonlinear, time dependent, materials paying particular attention
to viscoelasticity.

2 Constitutive equations

Thermodynamic continuum theory stems from the approximation of ther-
modynamic free energy function, dependent on the current state of strain
and a set of globally applicable material parameters. Such a function is of-
ten expressed in principal space with decoupled volumetric and deviatoric
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components (Simo and Taylor [10]),

ψ (ε1e, ε2e, ε3e) = U (Je)︸ ︷︷ ︸
vol

+ w̃ (ε1e, ε2e, ε3e)︸ ︷︷ ︸
dev

, (4)

where εAe and εAe are total and deviatoric logarithmic principal elastic strains
while Je = exp (ε1e) exp (ε2e) exp (ε3e) is principal volumetric strain.

The principal Kirchhoff stress is then defined by the differential

τA =
∂ψ (ε1e, ε2e, ε3e)

∂εAe
=
∂U (Je)

∂Je

∂Je
∂εAe︸ ︷︷ ︸

vol

+
3∑

B=1

∂w̃ (ε1e, ε2e, ε3e)

∂εBe

∂εBe
∂εAe︸ ︷︷ ︸

dev

. (5)

The 3D continuum theory analogue of the elastic relationship (2), now
takes a more complex form. Here any incremental increase in stress is a
function of both the corresponding increase in strain as well as the current
total state of strain. Using the volumetric and deviatoric components of
Kirchhoff stress from (5)

∂τA
∂εBe

=
∂ vol [τA]

∂Je

∂Je
∂εBe

+
3∑

C=1

∂ dev [τA]

∂εCe

∂εCe
∂εBe

, (6)

which is the complete 3D elastic moduli.

For cases where inelasticity is present, the total strain has elastic and
inelastic components. In the case of nonlinear viscoelasticity, suitable treat-
ment of inelastic evolution is presented by Reese and Govindjee [8]

~εe = ~ε trial
e − ∆t

2
[I3~η ]−1 dev [~τ ] . (7)

This expression1 represents the correction in a step in principal elastic strain
required to account for inelastic evolution following an initial trial esti-

1Note 1 = δi , I = δij and I3 = δijk , i, j, k = 1, 2, 3 denote 1st, 2nd and 3rd order
Kronecker delta tensors as explained, for example, by Bonet and Wood [2] or Simo and
Hughes [9].
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mate ~ε trial
e assuming the current step in strain to have been wholly elas-

tic. The term ~η is the principal viscosity vector with a possible nonlinear
functionality on rate.

(7) infers that the inelastic component of strain is wholly deviatoric. This
is a common simplification which is practical in many real circumstances [8].

This group of constitutive expressions presents an excellent test case for
an iterative algorithm to isolate nonlinear material parameters. Given the
intention of fitting such a model to experimental data, principal Kirchhoff
stress and total logarithmic strain are known and several limitations are
present. The elastic relationship (6) is assumed nonlinear and dependent
on the elastic strain and some set of parameters that must fit the whole
set of data. From the evolution (7), while the viscosity coefficient itself is
assumed to have unknown dependence on rate, providing elastic strain and
stress are known, this value can be calculated directly for each data point.
This discontinuity between global and local fit of parameters poses significant
difficulties.

3 Parameter extraction techniques

Implementation of a complex, multi-nonlinear theory based on thermody-
namic principles is rarely carried out in industrial circumstances due to pa-
rameter generation difficulties. Less complex theories are more commonplace,
making use of one or more simplifications to increase practicality.

Reese and Govindjee [8] present a viscoelastic model with Ogden hypere-
lasticity and constant viscosity for application to various rubbers. Constant
viscosity greatly simplifies parameter calculation.

Brusselle–Dupend et al. [3, 4] present research on a semicrystalline poly-
mer response, observing the viscoelastic viscosity to be highly dependent on
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elastic and inelastic strain rates. To allow calculation of the nonlinear viscos-
ity curve, they assume a linear relationship between stress and elastic strain
and calculate viscosity by rearrangement of an expression similar to (7).

An advantage to a theory that allows pointwise calculation of all nonlinear
values is that the dependencies of each need not be explicitly defined before
hand. Such a property is of significant benefit, particularly within materials
research on new or complexly dependent materials where such dependencies
are unknown. Here we present a theoretical development of such a theory
which is applied to the case of nonlinear viscoelasticity that is not limited by
linear assumptions or pre-specified functional dependencies.

4 Theoretical development

In order to completely define the material model outlined in Section 2 from
experimental test results, it would be desirable to be able to calculate elastic
strain ~εe and viscosity ~η for all data points. It would then be a trivial exten-
sion to apply least squares curve fitting techniques to fit suitable elasticity
and viscosity functions to the calculated values.

We begin by noting that the inelastic strain, ~εi is wholly deviatoric. Hence
vol [~εe] = vol [~ε ] and thus Je (~εe) = J (~ε). As a result the volumetric terms
of (5) and (6) become invariant to inelastic evolution and so need not be con-
sidered in what follows. Subsequently the deviatoric stress dev [~τ ] is written
as the simpler ~τ .

The linearized form of the modulus expression (6) is

∂~τ =

[
∂ ~τ

∂~εe

∂~εe
∂~εe

]
∂~εe = C∂~εe , (8)

where C is the 2nd order deviatoric modulus tensor. Ideally multiplication
of (8) by C−1 should result in ∂~εe however the volumetric component of C
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does not contain sufficient information to do this because of the whole form
of the expression, (6).

To counter this, we draw attention to the ∂~εe/∂~εe term. The deviatoric
strain is defined by

~εe = ~εe − 1
3

ln Je1 . (9)

Carrying out the differentiation

∂εeA
∂εeB

=
∂

∂εeB

(
εeA − 1

3
ln Je1A

)
= δAB − 1

3
δA ⊗ δB , (10)

where A,B = 1, 2, 3 .

By exploiting ∂~εe/∂~εe while inverting (8), a consistent result is achieved

∂~εe
∂~εe

C−1∂~τ =
∂~εe
∂~εe

∂~εe = ∂~εe . (11)

Now focussing on (7), ~ε trial
e is derived from operator split methodology [5]

such that for time t = tn+1

~ε trial
e n+1 = ~εe n + (~εn+1 − ~εn) . (12)

Applying this and (9) to the strain terms in (7) and because Je = J

~εe n+1 − ~ε trial
e n+1 = ~εe n+1 + 1

3
ln Je n+11− ~εe n − 1

3
ln Je n1

− ~εn+1 − 1
3

ln Jn+11 + ~εn + 1
3

ln Jn1

= ~εe n+1 − ~ε trial
e n+1 , (13)

where now
~ε trial
e n+1 = ~εe n + (~εn+1 − ~εn) . (14)

Now reformulate (7) with respect to deviatoric strain components as

~εe n+1 = ~ε trial
e n+1 −

∆t

2
[I3~ηn+1 ]−1 dev [~τn+1] . (15)



4 Theoretical development C652

Equations (8) (with substitution of (9)), (11) and (15) are unique and
functional on the three mutually dependent values C, ~εe and ~η. A convenient
manipulation is to substitute (11) into (15) to give a different form of the
equation set:

∆t
∂~εe
∂~εe

C−1
n+1~̇τn+1 + ~εe n − ~ε trial

e n+1 = −∆t

2
[I3~ηn+1 ]−1 ~τn+1

= −∆t

2
I3 [I3~ηn+1 ]−1 ~τn+1 1

= −∆t

2
I3~τn+1 [I3~ηn+1 ]−1 1 .

Rearranging2
η−1

1n+1

η−1
2n+1

η−1
3n+1

 = − 2

∆t
[I3~τn+1]

−1

{
∆t

∂~εe
∂~εe

C−1
n+1~̇τn+1 + ~εe n − ~ε trial

e n+1

}
. (16)

Because there are three expressions and three mutually dependent vari-
ables, a solution cannot be directly achieved by standard iterative methods
such as Newton’s method. The key to such an operation can be found within
plastic and viscoplastic theory [7, 9] whereby the method referred to as Clos-
est Point Projection (cpp) becomes an analogue to a multiple term, Newton’s
method when more than two mutually dependant values are present. Corre-
spondingly, Equations (8) (with substitution of (9)), (15) and now (16) are
rearranged into residual functions to be minimized3

r~εe = ~εe n+1 − ~ε trial
e n+1 +

∆t

2
[I3~ηn+1 ]−1 ~τn+1 ,

r~η =
−−−−→(
η−1
n+1

)
+

2

∆t
[I3~τn+1 ]−1

{
∆t

∂~εe
∂~εe

C−1
n+1~̇τn+1 + ~εe n − ~ε trial

e n+1

}
,

2When inelastic strain is isotropic, η1 = η2 = η3 ; however, it is useful for what follows
to keep the viscosity in vector form.

3In some highly nonlinear cases, the condition η1 = η2 = η3 may have to be rigidly
enforced which is done by including an extra residual function.



4 Theoretical development C653

rC = Cn+1 :
(
~εe n+1 + 1

3
ln Jn+11− ~εe n − 1

3
ln Jn1

)
−∆t~̇τn+1 . (17)

The vector of inverse viscosity has been abbreviated in vector notation.
Deriving each residual function with respect to their associated bases

∂r~εe
∂~εe

= I − ∆t

2
[I3~ηn+1 ]−2 I3~τn+1 ·

∂~η

∂~εe
,

∂r~η
∂~η

= −I3

−−−−→(
η−2
n+1

)
− 2

∆t
[I3~τn+1 ]−1 ∆t

∂~εe
∂~εe

C−2
n+1I4~̇τn+1 :

∂C

∂~η
,

∂rC

∂C
= I4 :

(
~εe n+1 + 1

3
ln Jn+11− ~εe n − 1

3
ln Jn1

)
+ Cn+1

∂~εe
∂C

, (18)

where I4 ijkl = 1
2
(δikδjl + δilδjk) is the symmetric 4th order identity tensor.

Linearizing the expressions by multiplying by the ∂base values and noting
that the change in residual function ∂r is desired to correct r toward zero,
in other words r + ∂r = 0 and thus ∂r = −r and therefore

−r~εe = I ∂~εe −
∆t

2
[I3~ηn+1 ]−2 I3~τn+1 · ∂~η + 03 : ∂C ,

−r~η = 0 ∂~εe − I3

−−−−→(
η−2
n+1

)
∂~η − 2

∆t
[I3~τn+1 ]−1 ∆t

∂~εe
∂~εe

C−2
n+1I4~̇τn+1 : ∂C ,

−rC = Cn+1 ∂~εe + 0 ∂~η + I4 :
(
~εe n+1 + 1

3
ln Jn+11− ~εe n − 1

3
ln Jn1

)
: ∂C .

(19)

Common practice in cpp operations is to combine (19) into one composite
matrix expression that can be inverted to calculate the respective update
values (∂~εe, ∂~η and ∂C). For this composition to be achieved the right hand
3rd to 2nd order tensor contraction terms in (19) must be reworked so as to
have an equivalent form in the 2nd order environment. A 3rd to 2nd order
tensor contraction proceeds [2]

3∑
i,j,k=1

Aijkei ⊗ ej ⊗ ek :
3∑

l,m=1

Blmel ⊗ em =
3∑

i,j,k=1

AijkBjkei . (20)
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Figure 1: diagram illustrating equivalent 2nd order representation of 3rd
to 2nd order tensor contraction.

The same vector product as in (20) is achieved by a non-square matrix
to vector multiplication, as illustrated in Figure 1.

With this in mind, (19) is rewritten asΞεε
n+1 Ξεη

n+1 ΞεC
n+1

Ξηε
n+1 Ξηη

n+1 ΞηC
n+1

ΞCε
n+1 ΞCη

n+1 ΞCC
n+1


∂~εe
∂~η
∂C

 = −


r~εe
r~η
rC

 ≡ Ξn+1 ·∆ = −R , (21)

where

Ξεε
n+1 = I ,

Ξεη
n+1 = −∆t

2
[I3~ηn+1 ]−2 I3~τn+1 ,

ΞεC
n+1 = 03 ,

Ξηε
n+1 = 0 ,

Ξηη
n+1 = −I3

−−−−→(
η−2
n+1

)
,

ΞηC
n+1 = − 2

∆t
[I3~τn+1 ]−1 ∆t

∂~εe
∂~εe

C−2
n+1I4~̇τn+1 ,

ΞCε
n+1 = Cn+1 ,
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ΞCη
n+1 = 0 ,

ΞCC
n+1 = I4 :

(
~εe n+1 + 1

3
ln Jn+11− ~εe n − 1

3
ln Jn1

)
,

and where ΞεC , ΞηC and ΞCC are 3rd order tensors written into 3×9 matrices
and ∂C is a 2nd order tensor written as a 9× 1 vector as per Figure 1.

Calculating the inverse of Ξ in (21) gives the following expression where
it becomes possible to determine the increments in strain, viscosity and mod-
ulus,

∆ = −Ξ−1
n+1 ·R . (22)

A complexity arises in the calculation of Ξ−1 because it is non-square
and rank deficient. As a result, no unique inverse exists. Applications such
as this have motivated the formulation of a generalized theory (also called a
Pseudoinverse) for partially inverting such matrices [1, 6, for example].

For this case m < n for Ξmn which is insufficiently dimensioned for an
unique solution to ∆, thus the pseudoinverse operation corresponds to the
minimization of the 2-norm of ∆, or in other words ‖∆‖ −→ min. For cases
where m > n , solution of the over dimensioned state corresponds to the least
squares minimization of (21).

Iterative implementation of (22) allows the values of ~η, ~εe and C to be
obtained on a pointwise basis and invariant to any explicit expression of
elasticity or viscosity.

5 Numerical example

Meaningful verification of the proposed method requires a predetermined
knowledge of the results to be calculated. As discussed, this is not possible
using experimental results from conventional finite strain techniques. As
a consequence a numerical test implementation of the viscoelastic material
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Figure 2: Plot showing viscosity against time.

model presented in Section 2 was solved with prescribed nonlinear elastic and
viscous relationships to validate the performance of the proposed technique.

A uniaxial test simulation was carried out to 10% strain at a strain rate
of 8× 10−5/s (as per polypropylene testing of Brusselle–Dupend et al. [3, 4])
and triaxial deviatoric stress and total logarithmic strain was output as would
be possible from actual laboratory experiments.

The viscosity against time and elastic strain against time simulation re-
sults along with the performance of the proposed algorithm are shown in
Figures 2 and 3 respectively. Also shown in these figures are approximations
based on the assumption of linear stress-strain relationship in line with the
methods of Brusselle–Dupend et al. [3, 4].
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Figure 3: Plot showing strain against time.
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A high degree of accuracy is achieved using the proposed algorithm to
calculate the viscosity and elastic strain.

6 Conclusion

A theory is proposed which allows the prediction of elastic strain and viscosity
before any explicit definition of nonlinear functions are chosen. This ensures
objectivity of the calculations to actual, rather than best fit, results that may
occur during more rigid parameter estimation.

The high accuracy of the prediction of simulation results justifies the
proposed theory and shows it to be a highly effective means to carry out
both parameter estimation and material response research.
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