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Abstract

The presence of microbial pathogens in surface water run-off from
water catchments is a significant problem for many Australian water
supply utilities. It is known that the microbial load in surface run-
off can increase rapidly during rain events, and then declines a few
hours afterwards. For the treatment of such water to ensure drinking
water quality to be effective, it is important to have some reliable
estimate of the microbial load in the raw water. Real time assessment
of microbial load is not possible as accurate laboratory assays are
time-consuming and expensive. This paper considers the possible
use of alternative, surrogate measures of microbial load derived from
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physical flow attributes such as volumetric flow rate and turbidity.
These measures are relatively easy to obtain and can be monitored
automatically to give real-time continuous data streams. We use data
collected over the past 2–10 years from a number of Adelaide Hills
catchments to calibrate some regression models. A log-log model for
microbial load with flow rate as the explanatory variable is shown to be
a good fit, but with a sizeable estimated standard deviation. Various
possible factors contributing to this variability are discussed. A physical
modelling approach is also used to try to understand possible microbial
‘washout’ associated with rain events on a seasonal scale. An improved
sampling technique is also suggested, which will potentially assist with
obtaining better quality data for use in developing improved regression
models in the future.
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1 Introduction

One of the primary responsibilities of water utilities is the maintenance of
mandated water quality standards for the water that they supply to their
customers. The difficulty involved in this task depends to a large extent
on the source of the raw water that is used. The quality of raw surface
water collected from catchments that have complex and multiple patterns of
land use is particularly problematic. In particular, agricultural enterprises
dominated by livestock often lead to the increased occurrence of microbes
in the soil that are potential human pathogens. Rainfall events liberate
these microbes from the soil and they subsequently enter streams within the
catchment through surface water run-off, and ultimately find their way into
storage reservoirs. Historically, heavy rainfall often preceded outbreaks of
drinking water borne disease [4, 7]. Curriero et al. [5] reported that 68%
of disease outbreaks were preceded by rainfall events that were above the
80th percentile of rain intensity.

One of the aims of water treatment is to remove or neutralise microbes
that are potentially injurious to human health. This is usually achieved by
techniques such as filtration and chlorination, amongst others. Although, in
principle, it is always possible to treat raw water to achieve this goal, to do so
is costly. It is therefore desirable to avoid treating water beyond the extent
needed to neutralise the microbes that are present, with a suitable safety
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margin included. Unfortunately, the determination of microbial population
counts in raw water is a complex laboratory process that is both costly and
time consuming. Turn around times for assays are typically of the order of
2–3 days. Therefore, such assays cannot be used for effective real-time control
of water treatment facilities. Moreover, the microbial entities of interest are
small in size (2–15µm), and they are typically present in the raw water at
low concentrations in the range 0.1–10L−1, mixed in with other particles of
similar size that are present at concentrations of 1 × 106 – 5 × 106 L−1 [8].
Reliable routine sampling in such environments is challenging.

Although microbial concentrations cannot be determined in real time, a
number of other, more physical, properties of the surface water run-off can
be automatically measured in real-time with reasonable reliability. These
physical properties include (volumetric) flow rate, turbidity, and electrical
conductivity of the surface water, which are typically measured at a small
number of locations in the major streams or creeks within a catchment.
Precipitation (rainfall) can also be measured automatically at various points
in the catchment. A natural question arising from this is whether real time
knowledge of these physical quantities might be useful for predicting microbial
concentrations. This could then provide a means of real-time management of
water treatment facilities.

The first step towards answering this question is to gather microbial population
count data along with corresponding physical run-off data from key sites
in a catchment, and then use this to test and calibrate a prediction model.
Over recent years SA Water1 has gathered data of this kind for a number
of Adelaide Hills catchments. For some catchments this data goes back ten
years or so; however, this older data mostly only contains microbe count and
flow rate. SA Water has progressively rolled out automatic sensors at key
locations within their catchments in the last 3–4 years, and this more recent
data includes the other physical variables mentioned above.

1 SA Water Corporation (SA Water) is a SA State Government owned water utility
that manages the water collection, treatment and distribution network throughout South
Australia.
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Some of this data is reported on by Swaffer et al. [10]. They showed significant
correlation between microbe (Crytosporidium) concentration and flow rate
(Spearman ρ = 0.76) and also turbidity (Spearman ρ = 0.63) for all rain
triggered run-off events over a six month period at one specific location in a
multi-use catchment. The six months considered, late Autumn to mid-Spring,
was the major rainfall period of the year for this site. Brookes et al. [2]
considered various surrogate indicators for Crytosporidium, including the
presence of fecal microbial organisms, suspended particle size, and turbidity.
Using inflow data following a major rain event, Spearman rank correlations of
around ρ = 0.58 were found between microbe (Crytosporidium) concentration
and the concentration of some indicator organisms, and around ρ = 0.70
for the concentration of medium size (14–28µm) particles. Signor et al. [9]
compared rainfall triggered high flow events and baseline flows. They also
found significant increases in Crytosporidium following a rainfall event.

At the 2016 misg workshop, SA Water asked the workshop to further explore
the potential relation between the physical surface water run-off parameters
(particularly flow rate and turbidity) on the one hand, and microbe con-
centration on the other. This paper describes some of the outcomes from
that workshop, concentrating primarily on theoretical and statistical aspects.
There is an extensive existing body of work in the water resources literature
on catchment models that seek to relate surface water run-off flow rates to
rainfall (precipitation), catchment topography, catchment hydrogeology and
measures of catchment dryness. However, these are not directly relevant to
this particular problem, as in this case measured hydrograph data is assumed
to be available.

The structure of this paper is as follows. Section 2 examines some of the
statistical issues around the standard ColorSeed laboratory technique used
to assay microbes such as Crytosporidium. Section 3 develops some simple
regression models for predicting the microbial load from the flow rate and
turbidity. These models are based on the previously mentioned historical
data collected by SA Water. A physical modelling approach is described in
Section 4 with particular focus on seeking to understand possible microbial
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washout. Section 5 describes an automatic sampling technique for determining
peak flow rate. This could have important applications in obtaining better
quality data for use in developing improved regression models in the future.

2 Statistical reliability of microbe population
count assays

As stated earlier, the determination of microbial population counts in raw
water is a challenging laboratory process. It is commonplace for microbes to
be “lost” in the assay process. ColorSeed is a widely used assay technique
for water borne pathogens such as Crytosporidium and Giardia, [6, 1]. To
seek to correct for losses in the course of the assay, the ColorSeed technique
adds a known number (100) of “marked” control microbes (marked with a
florescent dye) to the sample before assay. The number of these marked
microbes that appear in the final count after laboratory processing is then
used to gross up the corresponding count of unmarked microbes to arrive at
a corrected value that is then taken to be the “actual” microbe count in the
original sample. This is based on the assumption that equal proportions of
marked and unmarked microbes will be “lost”. Recovery rates for the marked
microbes of 30–50% are common in laboratory practice, but both higher and
lower recovery rates also occur; thus, actual counts are routinely scaled up by
factors of two to three.

2.1 Microbe measurement accuracy

The measurement of microbe concentration is done by collecting 10 litre
samples, adding 100 marked organisms (marked with a florescent dye) then
concentrating the organisms and counting the number of marked, M, and
unmarked, R, microbes recovered. The “corrected” concentration of microbes
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per 10 litres in the original sample is then

c = R
100

M
, (1)

which provides a correction for loss of microbes during the concentration
process.

We assume R is Poisson distributed with parameter r (giving a variance r), and
that M is binomially distributed with parameters n = 100 and p = m/100
say, so that m is the expected value of M.

The relative accuracy of the microbes per 10 litres c can be found approxi-
mately analytically or by a Monte Carlo simulation. For the analytic case,
substituting the mean values into (1) and differentiating gives

dc =
100

m
dr− r

100

m2
dm . (2)

Using the formula for the variance of a sum

var(c) = var(dc) =

(
100

m

)2

r+

(
r
100

m2

)2

m(1−m/100). (3)

For one standard deviation the relative error in c is√
(100/m)2r+ (r100/m2)2m(1−m/100))

(r100/m)
=
√

(1/r+ 1/m− 1/100) . (4)

A Monte Carlo calculation takes into account the skewness of the distributions
when r or m are small. A large number of samples (e.g., 100 000) from the
Poisson distribution (parameter r) and the binomial distribution (parame-
ters 100 and m/100) are generated. These are used to generate the same
number of samples of c from the formula for c. The ratio of the standard
deviation of the c samples to the mean of the c samples gives the relative one
standard deviation error for c. This Monte Carlo calculation took 174 seconds
compared with 0.0002 seconds for the analytic approximation.
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The two methods agree well for large values of r and m, but the analytic
estimates are low for small values. Table 1 gives values for the analytic estimate
and Table 2 gives those for the Monte Carlo method. The Monte Carlo method
also allows the calculation of percentage points of the distributions for each
marked microbe and unmarked microbe count. Tables 6, 7, 9 and 10 in
Appendix A give the 5, 15, 85 and 95 percentage points for the concentration
distributions, and for comparison Table 8 gives the calculated concentration
values using (1).

These error estimates are based solely on the counting statistics and thus are
the minimum size for the errors. Any other additional source of errors will
add to the size of errors estimated here.

2.2 Statistical tests for repeated microbe
measurements

Within the data available were 41 groups of tests for the original microbe
counts and 45 for the marked microbe counts where four samples were taken
and processed separately. These repeats allow the statistical assumptions of
the Poisson distributions for the original microbe counts and binomial for the
marked microbes to be tested. In particular it was desired to test if the data
variance was larger than expected for the distribution. The statistic√

variance

mean(1− probability)
, (5)

which ratios the variance to the predicted variance, was investigated with the
probability as mean/100 for the binomial distribution and zero for the Poisson
distribution as it is a zero probability limit of the binomial distribution. This
statistic squared is asymptopically related to the Chi-squared distribution [3],
but needed to be investigated due to the small number of repeats and the
variation in distribution parameters. Monte Carlo simulations generated the
distribution of this statistic and it was found that for the parameter range
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Figure 1: Distribution of 106 samples of the statistic
√

variance
mean(1−probability) for

binomial (p = 0.1, 0.5, 0.9) and Poisson (λ = 5, 20, 80). This curve is to
the resolution of the graph approximated by

√
χ2(3)/3, where χ2(3) is the

chi-squared distribution with three degrees of freedom.
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Figure 2: Probability of repeat samples of marked microbes, blue circles are
those which satisfy the binomial statistical criteria.
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of interest the distribution is independent of the distribution parameters as
shown in Figure 1, which shows the binomial curves for n = 100 and the
Poisson curves. The Poisson curve for λ = 5 is very marginally above the
others but is well within the accuracy needed for this application, and the
other curves are very similar.

The distribution curve is used to evaluate the experimental data by converting
the statistic (5) to a probability value as in Figure 1. Figure 2 shows the
probability distribution for the marked microbe count with the red stars
indicating those that are above 99% probability and hence probably not
consistent with the binomial distribution assumption. Twenty-six of the
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Figure 3: Probability of repeat samples of original microbes, blue circles are
those which satisfy the Poisson statistical criteria.

0 2 4 6 8 10 12 14 16
Statistic  sqrt(var/mean) sorted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

Probability of original bug count  four repeats Poisson distribution

45 cases are considered consistent with the binomial assumption. Similarly
Figure 3 shows the probability distribution for the original microbe counts.
Twenty one of 41 cases (in blue) are considered consistent with the Poisson
assumption (probability < 0.99). The samples not consistent with the statistic
assumptions have received additional variation during analysis, or additionally
from the original count during sampling or transfer. Since a reasonable
proportion of the samples are within the statistical limits, the sampling and
analysis method is capable of giving good results.
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Table 1: Relative error in microbe concentration determined using the analytic
approximation.

Marked microbe count out of 100
10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 0.36 0.28 0.25 0.23 0.22 0.22 0.21 0.21 0.20 0.20
50 0.33 0.24 0.21 0.19 0.17 0.16 0.16 0.15 0.15 0.14
75 0.32 0.23 0.19 0.17 0.15 0.14 0.13 0.13 0.12 0.12
100 0.32 0.22 0.18 0.16 0.14 0.13 0.12 0.11 0.11 0.10
125 0.31 0.22 0.18 0.15 0.13 0.12 0.11 0.10 0.10 0.09
150 0.31 0.22 0.17 0.15 0.13 0.12 0.10 0.10 0.09 0.08
175 0.31 0.21 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08
200 0.31 0.21 0.17 0.14 0.12 0.11 0.10 0.09 0.08 0.07
225 0.31 0.21 0.17 0.14 0.12 0.11 0.09 0.08 0.07 0.07
250 0.31 0.21 0.17 0.14 0.12 0.10 0.09 0.08 0.07 0.06
275 0.31 0.21 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.06
300 0.31 0.21 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.06
325 0.31 0.21 0.16 0.13 0.11 0.10 0.09 0.07 0.06 0.06
350 0.30 0.21 0.16 0.13 0.11 0.10 0.08 0.07 0.06 0.05
375 0.30 0.21 0.16 0.13 0.11 0.10 0.08 0.07 0.06 0.05
400 0.30 0.21 0.16 0.13 0.11 0.10 0.08 0.07 0.06 0.05
425 0.30 0.21 0.16 0.13 0.11 0.09 0.08 0.07 0.06 0.05
450 0.30 0.21 0.16 0.13 0.11 0.09 0.08 0.07 0.06 0.05
475 0.30 0.21 0.16 0.13 0.11 0.09 0.08 0.07 0.06 0.05
500 0.30 0.20 0.16 0.13 0.11 0.09 0.08 0.07 0.06 0.04
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Table 2: Relative error in microbe concentration determined using Monte
Carlo calculation.

Marked microbe count out of 100
10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 0.47 0.30 0.26 0.24 0.23 0.22 0.21 0.21 0.20 0.20
50 0.43 0.27 0.22 0.19 0.18 0.16 0.16 0.15 0.15 0.14
75 0.43 0.25 0.20 0.17 0.15 0.14 0.13 0.13 0.12 0.12
100 0.43 0.25 0.19 0.16 0.14 0.13 0.12 0.11 0.11 0.10
125 0.43 0.24 0.19 0.16 0.14 0.12 0.11 0.10 0.10 0.09
150 0.42 0.24 0.18 0.15 0.13 0.12 0.11 0.10 0.09 0.08
175 0.42 0.24 0.18 0.15 0.13 0.11 0.10 0.09 0.08 0.08
200 0.42 0.23 0.18 0.15 0.13 0.11 0.10 0.09 0.08 0.07
225 0.42 0.23 0.18 0.14 0.12 0.11 0.09 0.08 0.07 0.07
250 0.42 0.23 0.18 0.14 0.12 0.10 0.09 0.08 0.07 0.06
275 0.42 0.23 0.17 0.14 0.12 0.10 0.09 0.08 0.07 0.06
300 0.42 0.23 0.17 0.14 0.12 0.10 0.09 0.08 0.07 0.06
325 0.42 0.23 0.17 0.14 0.12 0.10 0.09 0.08 0.06 0.06
350 0.42 0.23 0.17 0.14 0.12 0.10 0.09 0.07 0.06 0.05
375 0.41 0.23 0.17 0.14 0.12 0.10 0.08 0.07 0.06 0.05
400 0.42 0.23 0.17 0.14 0.11 0.10 0.08 0.07 0.06 0.05
425 0.42 0.23 0.17 0.14 0.11 0.10 0.08 0.07 0.06 0.05
450 0.41 0.23 0.17 0.14 0.11 0.10 0.08 0.07 0.06 0.05
475 0.42 0.23 0.17 0.14 0.11 0.10 0.08 0.07 0.06 0.05
500 0.42 0.23 0.17 0.13 0.11 0.10 0.08 0.07 0.06 0.04
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2.3 Alternative statistical assumptions

An apparent alternative to the assumption that the count of recovered mi-
crobes (R) is distributed as a Poisson distribution, is to go back to the
distribution of microbes originally collected in the 10 litre sample and assume
that it has a Poisson distribution, and then adjust that number by the bino-
mial distribution seen from the marked microbes. Let C be the number of
microbes in the 10 litre sample, R be the number that were counted in the
assay, and p be the fraction (m/100) of marked bugs that were counted in
the assay out of the original 100 that were introduced. Suppose that

C ∼ Poisson(c) and R ∼ binomial(C,p). (6)

From the relation for conditional binomials [12], if R ∼ binomial(C,p) and
C ∼ binomial(c∗,q) then

R ∼ binomial(c∗,pq). (7)

Now taking limits q→ 0 with c∗q = c constant, and pq→ 0 with c∗pq = cp
constant, shows that if C ∼ Poisson(c) and R ∼ binomial(C,p) then in the
limit

R ∼ Poisson(cp) (8)
where cp is estimated as the number of microbes observed. (We used that a
Poisson distribution Poisson(r) is the limiting form of the binomial distribution
binomial(n,p) as p→ 0 with np = r fixed.) Thus, this alternative assumption
turns out to be identical to that used in the previous subsection, and so the
same conclusions follow.

The data may also be analysed using a Bayesian approach that generates
distributions for the parameters cp and p. From these distributions a
distribution for the test statistic can be generated. As the two distribu-
tions (M ∼ binomial(100,p) and R ∼ Poisson(cp)) are independent and
each rely on a single variable, the Bayesian calculation is easily completed.
However, as has been demonstrated the distributions for the test statistic
(
√
var /[mean(1− p)]) are independent of cp and p, so simulation of the

distribution in Figure 1 remains the same.
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3 Prediction of microbe concentration from
flow rate and turbidity

3.1 Nature of the available data

The detailed small scale study described by Swaffer et al. [10] shows that
the flow rate, turbidity and microbe concentration at a stream location
can all change significantly over a period of a few hours following a rain
event. Therefore, in fitting any model that seeks to relate instantaneous
microbial concentration and physical stream parameters, it is essential that
the collection of the water sample for assay and the measurement of the
relevant physical stream parameters take place as nearly as possible at the
same time. Four such synchronised data sets were made available by SA Water.
Each corresponded to a stream location in one of four different catchments.
Table 3 summarises the characteristics of the datasets. The data consisted of
microbial concentration (expressed as corrected counts per 10 L), volumetric
flow rates (as m3s−1) and turbidity values (in ntu units2). The collection of
turbidity data only commenced following the introduction of new automatic
measurement equipment, hence turbidity data is only available from around
the middle of 2013 onwards. Datasets including observations prior to this
only have microbial concentration and flow rate at some observation points.
As part of the equipment upgrade for automated sensing, the method used to
measure the flow rate also changed. This more recent flow rate data collected
using the automated sensors is considered by SA Water to be more reliable
than data obtained by the previous collection method.

Any samples for which the microbe concentration was recorded as zero
were excluded from the data considered here, as it was not possible to
distinguish between a zero concentration, and a non-zero concentration that
was below the limit of detection. As significant summer rain is not common

2Nephelometric Turbidity Units (ntu) are based on a comparative scale of light scattering
relative to scattering in a reference material and measured under some standard conditions.
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Table 3: Description of the data collected at four locations in SA Water’s
Adelaide Hills catchments. The data was microbial concentration (corrected
counts per 10L), volumetric flow rate (m3 s−1) and turbidity (ntu units),
unless indicated otherwise. Zero count data has been excluded.
Location
code

Dates Number Comments

gwf Oct 2013 – Nov 2015 n = 44

kc May 2008 – Sept 2015 n = 81 turbidity included
from July 2013
onwards. (n = 42)

lp May 2014 – Sept 2015 n = 34

Myp Aug 2000 – Nov 2015 n = 140 turbidity included
from May 2013
onwards. (n = 32)

for these catchments, data collected during the summer months was also
excluded, as there may be significantly different factors influencing the microbe
concentration during the summer. (Annual rainfall in these catchments is
typically around 800–1000mm, 80% of which falls during April–October,
peaking in the winter months of June and July.)

The microbe concentration data came from both routine samples, that is
samples collected at semi-regular scheduled times, and samples that were
deliberately collected in response to forecast or actual rain events. Since
the collection of samples for assay has been a manual process to date, such
rain event collections tend to occur at somewhat random times during the
hydrograph cycle that follows the initiating rain event. One observed side
effect of this is that microbial count data was mostly collected on the rising
edge of the hydrograph or from the long trailing edge of the hydrograph, but
seldom at or near peak flow rates. Thus, the available data may not cover
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the full range of flow rates that actually occur, being biased away from peak
flows, which is where we might expect microbial loadings to be the highest.
We return to this point in Section 5.

3.2 Regression model of microbial load

The problem as presented to the misg was formulated in terms of microbial
concentration, as this is what is directly assayed. However, a quantity that is
probably of more direct practical importance is the microbial load Q = qC ,
defined as the product of the microbial concentration C (number per 10L)
and the volumetric flow rate q. This describes the number of microbes that
pass the sampling location per unit of time, and is a more direct measure
of how many microbes are entering the water storage system. Using the
previously stated units for q and C, the units for Q are 102 s−1.

A log-log relationship of the linear form

log10Q = a+ b log10 q+ c log10 T

was fitted by simple regression using the four datasets, and selected subsets
of them. Here T denotes the turbidity. A logarithmic transformation of Q
was used as this tended to stabilise the variance of the fitted model. Also, on
physical grounds, an error model that assumes a fixed relative error in Q, as
opposed to a fixed absolute error, seems more reasonable. This again supports
a logarithmic transformation of Q. Table 4 summarises the fitted parameters
for the various catchments, or datasets.

Figure 4 shows the data and the linear fit in log-log coordinates for the
first of the Myp regressions in Table 4. The plus and minus one estimated
standard deviation of prediction lines are also shown around the fitted line.
The estimated standard deviation of prediction and the estimated standard
deviation of the data differ by less than 2% in this case. (See any standard
text such as Weisberg [11] for details of the estimated standard deviation of
prediction.) To assess the validity of the standard regression assumptions for
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Table 4: Summary of the results of the log-log regressions for the different data
sets. Here a, b, and c are the coefficients of the constant, log10 q and log10 T
terms respectively; except for Myp∗ where the coefficient in the a and c
columns are a0 and a1 respectively. See text for further details. No value
for a or c indicates that log10 q or log10 T was not used in the regression.
The adj. R2 column shows the adjusted R2, n is the number of data points
used in the regression and est. s.d. is the estimated standard deviation of
the data obtained from the residuals. A ? in the comments column indicates
that only data post mid-2013 is used. A ∗ indicates that a seasonal factor is
incorporated, using a 0/1 factor to indicate pre/post 1 July. Unless otherwise
indicated, the complete data set is used with no adjustments.

Location a b c adj.R2 n est. s.d. comments
gwf 1.42 1.86 - 0.895 44 0.553
gwf 1.02 1.66 0.26 0.897 44 0.547
kc 2.20 1.59 - 0.860 81 0.462
kc 2.20 1.62 - 0.894 42 0.340 ?
kc 2.06 1.59 0.090 0.893 42 0.342 ?
lp 1.43 1.47 - 0.858 34 0.501
Myp 1.30 1.34 - 0.754 140 0.541
Myp∗ 1.24∗ 1.31 0.0875∗ 0.753 140 0.542 ∗

Myp 1.28 1.47 - 0.824 32 0.468 ?
Myp 0.188 1.20 0.883 0.844 32 0.440 ?
Myp -2.76 - 2.96 0.581 32 0.722 ?
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Figure 4: Data and linear fit of load Q versus volumetric flow rate q plotted
in log-log form for the full Myp data set regression in Table 4. Plus and minus
one estimated standard deviation lines are shown.

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

lo
g(

Q
)

log(q)

log(Q) vs log(q)

log Q data

+sd

-sd

linear fit

this case, Figure 5 shows a normal probability (rankit or Q-Q) plot of the
regression residuals. Except for a handful of extreme values, the residuals lie
close to a straight line, indicating approximate normality. Although strictly
speaking, the regression residuals are not normally distributed under the
standard regression assumption of normal errors, in this case the degrees of
freedom n−p = 138 is large, and so the regression residuals are approximately
normal [11]. These observations justify our use of a log transformation of the
load Q data.

Transforming back to the original variables Q and q gives a power law relation
Q = 10aqbTc, which is shown graphically in Figure 6. This plot also shows
the transformed +1 and +2 estimated standard deviation bands. Clearly
the spread of these bands increases with q as they represent a fixed relative



3 Prediction of microbe concentration from flow rate and turbidity M86

Figure 5: Normal probability (rankit or Q-Q) plot of residuals from the full
Myp data set regression in Table 4. The scale on the vertical axis is the
inverse of the standard normal cumulative distribution function (InvNormcdf)
applied to the empirical cumulative distribution of the residuals. So for
example, 0 on the vertical axis corresponds to the median. A straight line
through (0, 0) would represent a normal distribution.
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Figure 6: Plot of the load Q data and the power law fit obtained by back
transforming the regression shown in Figure 4. Bands corresponding to back
transformed +1 and +2 estimated standard deviations are shown.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7

lo
ad

 Q

flow rate q

power law fit

load

+sd

+2sd

power law fit

fraction of the fitted power law.

Similar plots are also obtained for the other regressions in Table 4. As one
further example, Figures 7 and 8 show the log-log data and fit and the data
and fit in the original variables for the full kc data set.

All of the regressions summarised in Table 4 that use log10 q as an explanatory
variable have adjusted R2 values over 0.82, with the exception of the full
Myp data set. Attempts to improve the quality of the model fit by introduc-
ing log10 T as another explanatory variable had only a marginal effect. This
is not completely unexpected since, as shown in Table 5, log10 q and log10 T
are reasonably correlated, at least for some of the data sets. Nonetheless, it
is still a little surprising to us that introducing turbidity has such a small
effect on improving the regression model, since, at least intuitively, high
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Figure 7: Data and linear fit of load Q versus volumetric flow rate q plotted
in log-log form for the full kc data set regression in Table 4. Plus and minus
one estimated standard deviation lines are shown.
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turbidity, which indicates a large amount of suspended material present in
the run-off stream, should mean that a high number of microbes are also
present. Confirming this apparent lack of relevance of turbidity is the last
Myp regression listed in Table 4, which uses log10 T as the only explanatory
variable and gives a markedly lower adjusted R2.

For the Myp data a very crude attempt to introduce a seasonal effect was
investigated. The data was blocked according to whether the date was in the
first or the second half of the year. Each block was allowed to have a different
constant term in the regression. More specifically, we considered the model

log10Q = a0 + a1M+ b log10 q

where M = 0 for the months Jan–June (inclusive), and M = 1 for the
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Figure 8: Plot of the load Q data and the power law fit obtained by back
transforming the regression shown in Figure 7. Bands corresponding to back
transformed +1 and +2 estimated standard deviations are shown.
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Table 5: Correlation of log10 q and log10 T for the datasets described in
Table 3. Datasets are restricted to data for which both the flow rate q and
the turbidity T are available.

Location code corr.(log10 q, log10 T) n

gwf 0.844 44
kc 0.453 42
lp 0.730 34
Myp 0.728 32
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months of July–Dec. (inclusive). However, using this enhanced model had no
noticeable effect on the quality of the fit, see the row marked Myp∗ in Table 4.
Extending this to allow the coefficient of log10 q to also depend on M, as in

log10Q = a0 + a1M+ b0 log10 q+ b1M log10 q ,

again produced no improvement (a0 = 1.29, a1 = 0.0283, b0 = 1.368,
b1 = −0.111, adj. R2 = 0.753, n = 140, est. s.d. = 0.543).

Another observation from Table 4 is that the estimated standard deviation of
the error lies in the range of 0.35–0.55, irrespective of the catchment. Also,
for the kc and Myp datasets where there was both old and more recent flow
rate data, restricting to the more recent data (that is, the post mid-2013
data) decreases the estimated standard deviation noticeably, supporting the
belief that the post mid-2013 data for q is more reliable. For kc and Myp,
excluding the pre mid-2013 data for q hardly changes the fit parameters a
and b, but, as just noted, reduces the estimated standard deviation.

3.3 Nature of the regression error

The assumption that there is a well defined functional relationship between
the instantaneous values of the load Q and the flow rate q, and that the only
source of error is “measurement” error arising from the assay and sampling er-
rors, is likely to be simplistic. To gain some indication of the likely magnitude
of this measurement component of the error, some repeat measurements were
identified in the data for Q. Across all four catchment data sets there were five
cases where four nominally identical measurements had been made, one case
of three measurements, and one case of two measurements. However, whether
or not these nominal repeats were truly independent repeats of the same
measurement was not able to be determined. Whilst it is almost certain that
the assays were independent, the sampling may not have been. For instance,
the repeat samples may have just been subsamples of a single large sample.
Nonetheless, pooling all these repeats and calculating a pooled variance gives
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an estimated standard deviation of 0.19 (for 18 degrees of freedom). The
individual unpooled standard deviations ranged from 0.04 to 0.21. Bearing in
mind that the repeat measurements may not have been truly independent
repeats, this estimate may err on the low side. The regressions above con-
sistently yielded estimated standard deviations lying approximately in the
range 0.35–0.55. It would therefore seem that the measurement component is
a significant, but possibly not the major component, of this overall standard
deviation (it is the variances, that is the square of the standard deviations,
that we might expect to be approximately “additive” over various sources
of error.)

There are many reasons to believe that there are other, quite significant
sources of error in such a simple model. The distribution of microbes is
unlikely to be uniform across a catchment, and rain need not consistently
fall uniformly within a catchment. Thus, the same volume of run-off from
a catchment may well carry different numbers of microbes depending upon
where it falls in the catchment. Moreover, it is likely that there will be some
kind of washout effect, which may operate on a number of timescales. During
a heavy rainfall event, there may initially be an high rate of microbial uptake
by the run-off, but this may decrease with time as the microbes in the soil
become depleted and fewer are available for uptake. Depending on the source
and life cycle of the microbes this depletion effect may also play out over
the longer, seasonal timescales, with lower uptake rates later on in the rainy
season. Although a crude seasonal factor was experimented with above, its
negligible effect should not be taken to rule out more subtle seasonal effects.
Thus we expect both spatial and temporal effects to be significant, neither of
which are adequately captured by a simple model of Q depending only on q.

More generally, an increasing functional relationship in the log-log domain
cannot apply over all ranges of q, since Q cannot increase indefinitely as
the flow rate q increases since the supply of microbes must ultimately be
exhausted. Thus we expect there to be a plateau in theQ versus q plot at some
stage, potentially followed by a decrease. However, whether such a plateau is
reached under normal rainfall conditions is likely to be catchment specific.
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The data considered in this paper gives no suggestion of such a plateau.

A constant standard deviation in the log-log description translates into error
bands of a fixed ratio when transformed back into the original variables of Q
and q. Thus a standard deviation of 0.4, say, which is broadly representative
of the cases summarised in Table 4, corresponds to a ratio of 100.4 ≈ 2.5.
Thus the one-sigma and two-sigma error bands can become quite large for
large values of the flow rate q, as demonstrated in Figures 6 and 8. These
large error bands are due to the observed logarithmic nature of the error, or
in other words, the error corresponds more to fixed relative errors rather than
fixed absolute errors; and the large number of unknown factors, which the
above simple model is, in effect, statistically averaging over. Whether, despite
the large error bands, curves such as these can be useful in practice for run-off
control and management by water utilities requires further investigation.

4 Physical model of the transport of microbe
particles in run-off

In order to gain a better understanding of the transport of microbes in the
surface run-off within a catchment, a simple physical model was developed.
In this model the microbes are considered to be inert particles that have
an initial population in the soil. During a rain event they enter the run-off
from the soil at a rate proportional to both the local run-off flow rate and
the number of microbes remaining in the soil. No regeneration of particles
within the soil is allowed for during a rain event, and so “washout” may occur
in some circumstances. Assuming a single or series of rainfall events and
making certain simplifying assumptions about the nature of the runoff and
the topography of the catchment, we compute the accumulated flow down
the catchment, along the stream and entering the reservoir (Figure 9).

The problem is resolved into two components. In the first, the flow of water
down the slope due to a rain event is calculated. Once the flow is known, the
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Figure 9: Schematic diagram of flow. Water flows down the side of the
catchment and joins the stream, eventually entering the reservoir. The
distance up the slope is y, and along the streambed the distance is x to a
maximum of X, the length of the catchment.
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y

uptake of particulate during the run-off is computed. In the second phase the
flow along the stream is computed using the input from the run-off.

4.1 Run off to the stream

Define the “height" of water running down the slopes in a valley in the y-
direction to be h(y, t). The height h is just representative of the flow down
the slope rather than actual height. We compute the one-dimensional flow
down a broad, flat incline. Define the distance up the slope to be y, and
assume the speed of flow to be a constant, v.

In that case, the equation for flow quantity, h, is

ht − vhy = QR(y, t) (9)

where QR(y, t) can be thought of as the temporal and spatial (up the slope)
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extent of a rainfall event or simply as the amount of water that eventually
makes it to the stream from each location due to a rainfall event. If the result
of the rainfall and consequent run off are centred over the stream and are
Gaussian in time, centred at t = T , then

QR(y, t) =
2R0

κ
e−[(t−T)/σT ]

2

e−(y/σY)
2

(10)

where κ = πσYσT [erf(T/σT ) + 1] standardises the total amount of rainfall
for different spread values, σT and σY for time and space respectively, and the
time of maximum rainfall, T . This form assumes that water falling higher up
the slopes does not all make it to the stream. R0 is the intensity of rainfall, and
doubling it will double the amount of rain. Changing the other parameters
does not change the amount of rainfall, only the timing and extent. Thus
the total amount of rain falling over a given catchment region is equivalent,
independent of when and how it falls. This quantity is meant to be a trial
function only so that we can compare behaviour. Figure 10 shows the rainfall
function for a case with R0 = 4 × 10−5, σY = 1.75, σT = 1, T = 6, which
represents about 20mm of rain falling over a time period of about four hours,
with heaviest rain six hours after midnight. The function represents that
rain water closer to the bottom of the river valley is more likely to eventually
reach the stream.

The level of particulate is small and so we treat it as a tracer that is simply
carried along with the flow. Therefore, the level of particulate A(y, t) depends
on the water flow level h(y, t), flow velocity v, and the concentration level on
the ground, G(y, t). The appropriate equation for particulate concentration
in the runoff water is

(hA)t − v(hA)y = k0vh(y, t)G(y, t), A(y, 0) = 0. (11)

The concentration of the particulate is computed by making some assumptions
about the rate at which it is picked up during the downflow in the catchment.
Since the concentration is always very low, we assume that it is absorbed into
the downflow at a rate proportional to the “height” of the downflow (with rate
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Figure 10: Shape of rainfall deposition curve (10) over the catchment
upstream. Variation in y goes up the slope of the side of the catchment. The
streambed is situated at y = 0. Less water from high up the catchment makes
it to the streambed.
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constant k0), and to the concentration in the soil, thus at a particular point

dG

dt
= −k0vh(y, t)G(y, t), G(y, 0) = G0. (12)

If the particulate in the soil is always constant, then we simply set G = G0

at all times and the uptake continues. Otherwise, the amount of G decays
exponentially depending on the flow rate. The longer the flow occurs, the
more of the particulate is washed away, so that eventually this term drops
to zero. The equations for the water flow decouple from the particulate
concentration, and we obtain the solution for h(y, t) by determining the
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Figure 11: Shape of runoff volume up the catchment and over time. The
streambed is situated at y = 0, so the amount of water entering the stream
can be seen at the left end of the surface.
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characteristics of the equation in the usual way. The solution for h(y, t) is

h(y, t) =
2R0 exp

{
−
[
y−v(t−T)

D

]}
√
πD

[
erf( T

σT
) + 1

] (13)

×

erf


(
σT
σY

)
vy+

(
σY
σT

)
(t− T)

√
D

− erf


(
σT
σY

)
v(y− vt) −

(
σY
σT

)
T

√
D

 .

where D = c2σ2T + σ2Y . Setting y = 0 in this expression gives the level of
water entering the stream as a function of time. Figure 10 shows the shape
of the rainfall function, QR, and Figure 11 shows the resulting runoff graph
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for h(y, t). The sharp rise is due to the sudden rainfall event while the long
tail is due to the time taken for the runoff to trickle down the side of the
catchment after the rain has stopped.

Once the value of h(y, t) is known we solve pde (11) for A(y, t) by rearranging
(using pde (9)) to give

At − vAy = k0vG(y, t) −
QR(y, t)A(y, t)

h(y, t)
, A(y, 0) = 0, (14)

a linear, but very nasty, equation for particulate concentration in the runoff
water. Evaluating G(y, t) exactly, using ode (12), gives

G(y, t) = G0 exp

[
2R0(E+ F)e−y/D√

πD

]
, (15)

where
E =

(
N

M
+ t

)[
erf
(
Mt+N√

D

)
− erf

(
N√
D

)]
and

F =
D√
πM

[
exp

(
−

(
Mt+N√

D

)2
)

− exp

(
−
N2

D

)]
with

M = v2
(
σT

σY

)
+

(
σY

σT

)
and N = (y− vt)v

(
σT

σY

)
−

(
σY

σT

)
T .

This function can be used to evaluate the remaining particulate concentration
at any location on the slope, and is also required to solve for the particulate
in the trickle water. The solution for A(y, t) must be obtained from pde (14),
and this is done very accurately by integrating along the characteristics of
the pde, in this case lines on which α = y − ct are constant. The load of
particulate entering the stream is therefore

L(t) = A(0, t)h(0, t). (16)
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4.2 Stream flow

In the second part of the calculation we use the water level and particulate
load entering the stream to compute the stream flow and particulate load
flowing down to the dam. In this case, the input flow is that from above
computed as the sum of the catchment downflow at location y = 0 (the
stream location). Thus the pde for the stream flow is

St − uSx = [1−H(x− X)]h(0, t), S(x, 0) = 1 , (17)

where u is the stream flow velocity (assumed constant), and S(x, t) is the
flow volume in the stream. The assumption that S(x, 0) = 1 is simply to say
that before the rainfall event the stream is flowing with unit depth. This does
not affect the load entering the dam. The water inflow from the catchment
at each location, x, is Q(t) = h(0, t); that is, evaluating Section 4.1 at y = 0
gives the flow entering the stream. In this simple model the water inflow is
assumed to be the same at each point on the stream, but in principle there is
no reason why it could not be a function of x also.

The Heaviside step function is defined as

H(x− X) =

{
0, if x < X ,

1, if x > X ,
(18)

where X is the length of the stream within the catchment. This restricts the
flow domain to remain within the catchment.

This set of parameters can be estimated in a real situation, but our goal
here is to test the concept and so we make what we believe to be reasonable
choices to compute the flow and subsequent particulate load in the reservoir.
The flow from the stream into the reservoir is computed by solving pde (17)
and then finding S(0, t). Figure 12 shows the time series of flow values for a
rainfall event shown with the timing and volumes entering the stream at any
point and then the reservoir.
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Figure 12: Comparison of magnitude and timing of flows; rainfall, flow entering
the stream and flow entering the reservoir for R0 = 4 × 10−5, σY = 1.75,
σT = 1, T = 6, v = 1.75 km/hr, u = 4.5 km/hr, X = 12 km, and Y = 4 km.
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The pde for the particulate concentration in the stream is

(SC)t + u(SC)x = [1−H(x− X)]h(0, t)A(0, t), (19)

with C(x, 0) = 0, 0 < x < X, t > 0, assuming there is initially no particulate
in the stream. As above, after rearrangement, this gives

Ct + uCx = [1−H(x− X)]

[
L(t) −Q(t)C(x, t)

S(x, t)

]
. (20)

The final step is to compute the flow and load at the downstream location
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x = 0, assumed to be the entry to the reservoir. This is achieved again by
integrating along the characteristic curves, in this case where γ = x − ut,
subject to the condition that t < X/u. If t > X/u, then for the first period
of time 0 < t < X/u there is no water entering the stream, and so integration
must then be from t = X/u to the current value of t. The load of particulate
entering the reservoir is

LR = S(0, t)C(0, t). (21)

Due to the complexity of these calculations, we used the package Octave for
the calculations.

4.3 Results

It is of interest to compute the stream flow and particulate load at the reservoir
entry point. In particular, we are interested in the effect of washout of the
particulate from the catchment. Comparing different cases we determine if
there is a typical signature to the load of particulate entering the reservoir. The
case used here is just a simple example, but does show some interesting effects.

Figure 13 shows the particulate load entering the reservoir for a case with
constant amounts of particulate on the slope compared to a case of diminishing
amount due to washout. The input to the reservoir starts the same as the
flow begins but in the case of washout diminishes as the particulate is flushed
off the slopes. In this example all of the particulate is washed out during this
rain event. Parameter values were R0 = 4× 10−5, σY = 1.75, σT = 1, T = 6,
v = 1.75 km/hr, u = 4.5 km/hr, X = 12 km, and Y = 4 km.

Figure 14 shows an example with the same parameter values as the case
above, except that the trickle velocity down the slope has been reduced from
v = 1.75 km/hr to 1.1 km/hr. All other parameters were kept the same. The
load has a slight double bump due to a slight difference in timing of peak
flows between the slope runoff and the stream flow.

In this case the lower trickle velocity on the slopes reduces the uptake of
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particulate so that after the rainfall event there is still some remaining.
Assuming two more (identical) rainfall events over subsequent days, the
three solid curves represent the load reaching the reservoir on the three
days. At each stage more of the particulate is washed out, leaving a much
smaller load to enter the dam. After the third rainfall event, there is no
particulate remaining, so in the short term subsequent events does not lead
to any particulate reaching the level. However, if there is sufficient time for
the particulate levels to rebuild on the slope, then the situation returns to
the original. If the particulate is not being washed out, that is there is an
unlimited supply on the slopes of the catchment, then the curves for each
rain event would look identical.

4.4 Comments

This simple model is limited by its assumptions, but does provide an interesting
study of the events that lead to load reaching the reservoir. If there is an
unlimited microbe concentration on the slopes, then each event leads to a
similar load curve. However, if the microbe concentration is washed away, that
is locally depleted, then depending on the rate of uptake, subsequent events
may have much reduced load reaching the reservoir. Given the nature of the
microbes it is quite likely that the time between events may see a rebuilding
of the levels so that the next event is likely to see higher load delivered to
the reservoir again. Variations in the stream and slope runoff velocities have
quite a significant effect on both the stream flow characteristics and the load
delivered to the reservoir. Thus it is important to know the time scales on
which a build up of the ground level concentration G occurs in the catchment,
so that estimates can be made of build up before subsequent rain events. It is
beyond the scope of this study to do a full analysis of the variations in flow,
rainfall and load washout, but the simple model does provide a tool for such
analysis in the future.
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Figure 13: Load of particulate entering the reservoir for undiminished load
on the slopes (dashed line), and a case with uptake rate k0 = 10. In this
example, all of the particulate is washed out in the single rain event. Other
parameters were R0 = 4× 10−5, σY = 1.75, σT = 1, T = 6 hr, v = 1.75 km/hr,
u = 4.5 km/hr, X = 12 km, and Y = 4 km.
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Figure 14: Load of particulate entering the reservoir for undiminished load
(dashed line) on the slopes, and a case with uptake rate k0 = 10. Parameters
are as in Figure 13 except that v = 1.1 km/hr. Not all particulate is washed
out, so the load from subsequent (identical) rainfall events on successive days
is shown (time shifted to match).
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5 Identifying peak flow events for automated
sampling

One of the shortcomings in the data collection process has been the difficulty
in collecting samples for microbe population assays at the best times. It
is desirable to collect samples at the peak of the hydrograph, as SA Water
believes this is when the microbe count is likely to be at a maximum. The
introduction of automatic sample collection presents the opportunity to refine
the sampling process in order to better achieve this goal. An approximate
real-time technique to determine the local maxima in the hydrograph is
described in this section.

This technique is based on approximating the slope of the hydrograph using
discrete time steps. Successive falls in the hydrograph over a given number
of time steps is taken as an indication of a local maximum, which is used to
trigger the taking of an automatic sample. Strictly speaking, such a local
maximum would only be detected after the event; however, if the size of the
time step and the number of time steps needed to make a decision are small
enough, then this delay in detection will not be significant.

As shown in Figure 15, the hydrograph is noisy, with many localised peaks
that are not of interest for sampling purposes. One category of localised
peaks that is ignored for sampling purposes are those occurring during low
flow events. As interest is in high flow events, a lower streamflow threshold is
identified, below which samples are not of interest. This sampling threshold is
specific to each catchment and should be identified from the historical record
of events and past sampling.

During high flow events, the hydrograph typically contains many localised
peaks during both the rise and fall. Localised peaks during the fall of the
hydrograph are discounted by ignoring identified peaks corresponding to
a lower streamflow than previously sampled. The presently implemented
automated sampling method collects point-time samples from a single location,
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Figure 15: Observed streamflow for one catchment over the period 21 June
to 12 August 2014, with observations at five minute intervals.
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which are then collected for processing. The sampler is therefore simply re-set
to identify new peaks on collection of previous samples from the site.

One challenge with this approach is the limited capacity of the automated
sampler. Once taken, samples cannot be automatically discarded, and there-
fore the number of samples that can be collected is limited. Attendance at
the site is required to empty or replace the sampling buckets before additional
samples are taken. It is therefore necessary to balance the duration of the
falling streamflow, and hence the delay after a peak where a sample is taken,
with the risk of exceeding the capacity of the sampler due to a high number
of localised peaks during the rising hydrograph. Examination of the historical
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record for each catchment will assist in identifying a suitable number of repeat
falls to trigger a sample.

The proposed automated sampling method is illustrated by the pseudo-code:

if (dt > sampling.threshold and dt < dt−1) then
falling.count = falling.count+ 1
if falling.count = falling.threshold then

if dt > previous.sample then
take sample
previous.sample = dt

end
end

else
falling.count = 0

end

In this code

• dt is the streamflow at the current timestep,

• sampling.threshold is the minimum streamflow below which samples
are not taken,

• falling.count records the number of successive falling streamflow mea-
surements,

• falling.threshold is the number of successive falling streamflow measure-
ments that will trigger a sample, and

• previous.sample is the discharge associated with the previous sample
taken.

The above pseudo-code applies to the automated sampler, when applied to
historical data it is necessary to include a sampling window, after which the
previous.sample is reset to zero.

The above method is illustrated on four local peaks observed for one sample
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catchment during July 2014, and is shown in Figure 16. Each subfigure shows
a five-day window of streamflow observations (in m s−1), with the identified
sampling times indicated by the points. In these examples two successive falls
in the streamflow were used to trigger a sample, with a minimum sampling
threshold of 20m s−1. A falling.threshold = 2 was chosen based on a manual
review of the results of this method on the catchment data. It was found
that, given the sampling interval of five minutes, a high falling threshold,
for example 5, missed many of the peaks, whereas the chosen threshold of 2
did not lead to an unacceptable number of false positives during the rising
hydrograph. All other parameters were chosen in an analogous manner, that
is by reviewing the data and trailing different parameter values. As seen
in Figure 16, the selected parameter values are effective in identifying the
peak, which is the desired time in the hydrograph at which to take a sample.
Increasing the sampling window when reviewing historical data, here just one
hour, would further reduce false positives during the falling hydrograph.

This method provides a simple means by which automated samples can record
close to the peak of the hydrograph, which will hopefully correspond to the
peak microbe load. Since the rainfall record and the hydrograph often seem
to have the same shape, the pattern of local peaks and troughs should be
quite similar between the two. As there is a delay between them, it may be
possible to perform an analysis similar to that just mentioned on the rainfall
record, and use this to predict beforehand when the peak flows will occur. It
would be useful to explore this approach further.

Although the focus here is on collecting samples as close to the peak as
possible, automated sampling provides for alternative collection strategies
to be explored. For example, in some cases it might be of more interest to
obtain a flow rate weighted accumulated microbe count over an entire rain
event as this would more accurately represent the number of microbes in the
run-off that will accumulate in the reservoir. One possibility might be to
collect samples at regular time intervals, and then mix them in proportions
determined by the flow rate at the time each sample was taken. This one
mixed sample could then be assayed for the microbe count, which could then
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Figure 16: Illustrated peak identification for a series of high streamflow
events in the month of July 2014 for one catchment. The observed discharge,
recorded at five minute intervals, is shown for a five day period in each plot by
the solid line, with the indicated sampling locations shown by the blue points.
The plots are generated with sampling.threshold = 20, falling.threshold = 2,
and with a sampling window for considering previous samples of one hour.
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be scaled up by the total flow volume to give an overall microbe load.

6 Conclusions

SA Water captures water from a diversity of sources, including from surface
water catchments located in the Adelaide Hills. This region is known to
host microbes in the soil, which are transported into the water supply, and
if untreated, present a risk to human health. A range of water treatment
options are used by SA Water to ensure water supplies are safe, and while
it is always possible to use the most extreme treatment options, such an
approach is inefficient and costly. Although it is possible it identify the
concentration of microbes in a water supply, these laboratory techniques take
time and are expensive. It would therefore be advantageous to use alternative
characteristics of the water supply that are more easily measurable to sup-
plement the laboratory process in understanding water quality. To this end,
SA Water asked the 2016 misg workshop to investigate connections between
observed microbe concentrations and other physically observed properties
such as streamflow and turbidity. A variety of approaches were taken to
understand the potential connection between microbe concentrations and the
observed streamflow properties.

The laboratory technique used to identify the microbe concentration involves
adding a known number of marked microbes to the sample, and using the
retained number of marked microbes as a proxy for the expected loss of
unmarked microbes, under the assumption that marked and unmarked mi-
crobes are lost during processing at the same rate. Statistical analysis of this
process in Section 2 indicates that where only a small proportion of marked
microbes, say 20% or less, are recovered, errors in the unmarked microbe
count can typically exceed 20% and thus care should be taken when using
the microbe count.

Simple catchment specific log-log regression models for the microbe load
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as a function of the streamflow and turbidity are presented in Section 3
together with the coefficients for each of the example catchments. This
regression analysis demonstrates that the microbe load is best described by
the streamflow and turbidity, with streamflow being the dominant factor
in the models. Although the models that are described fitted the available
data well in an overall statistical sense, with an adjusted R2 of around 0.85
for most of the catchments, because of the logarithmic transformations that
are involved, the model prediction errors when expressed in absolute terms
are large at high flow rates and high microbe loadings (typically around
200–300% for the one-standard deviation error band). Such large absolute
errors in part reflect that the various sources of variability which the simple
models do not explicitly account for are more likely to show themselves as
fixed relative errors in prediction rather than absolute errors. These simple
regression models, which only use flow rate or turbidity as the explanatory
variables, in effect statistically average over all the other sources of variability
that are not explicitly accounted for. Examples of these unaccounted for
sources of variability include spatial variability within a catchment, and
time effects ranging from the short term during a rain event, to longer term
seasonal effects. Whether the simple prediction models presented in Section 3,
despite their large error bands, can still be useful in practice as management
tools by water utilities such as SA Water requires further investigation. To
improve the models’ predictive power, further explanatory variables will
need to be introduced, presumably addressing the spatial and time factors
just mentioned.

Also in Section 3 an initial simple analysis of seasonal effects within the
regression model concluded that these effects were not significant. However,
this simple analysis only considered an early and late season binary classifica-
tion as the seasonal variable, and that this had a negligible effect should not
rule out the possibility of more subtle seasonal or other time related effects
being significant.

The land-based population of microbes is shown in Section 4 to be important
for the resulting microbe load that reaches reservoir entry points. Where the



6 Conclusions M111

population of microbes is limited, our physical model demonstrates how the
profile of microbe concentration, and hence the final concentration in the
reservoir, is reduced if the land-based population is limited and subject to
washout. Improved information about the land-based lifecycle of the relevant
microbes would be useful in understanding the expected microbe concentration
in samples after rainfall events, particularly where rainfall is ongoing for
some period of time. Such understanding could throw light on whether the
maximum microbe concentration tends to occur close to the peak streamflow.
Whether or not this holds is potentially an important consideration in deciding
upon a water sampling schedule, as discussed briefly below.

In addition to the things considered at misg, there are several other avenues
that might be explored further. One possibility is to consider the size of the
reservoir and the physical processes therein, for example, for a larger reservoir
with a relatively small inflow, depending on the properties of the inflow, new
water is unlikely to reach the outlet in a short time, and consequently the
presence or otherwise of particulates may not matter. Models exist that
study this behaviour under different conditions. SA Water already has some
computational models of the flow within reservoirs. It may be useful to seek
to incorporate the transport of microbes and other particulates from input
streams into theses models.

One challenge in identifying correlates and predictors of high microbe con-
centrations has been the number and the timing of the available microbe
samples. Currently SA Water takes water samples both routinely, that is
according to a schedule, and in response to significant streamflow or rainfall
events. However, in most instances, samples are not taken at the peak of the
hydrograph, which is when the microbe concentration is widely believed to
peak. Section 5 presents an algorithm to detect near-peak streamflow events
in real-time. This algorithm has been successful in identifying peaks in some
examples taken from the historical record. It could potentially be used to
trigger automatic sampling at near-peak streamflow, although in-service trials
would be needed to confirm this.
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Further research by SA Water is necessary to develop and deploy a predictive
model for microbe concentration. The investigations reported here provide
a basis to guide future sampling, observation and analysis. Although most
of the work described here has been specific to the SA Water catchments
for which data was available, the same approaches could be applied to other
catchments. Clearly, the various model parameters will be catchment specific,
depending on rainfall, weather patterns, catchment topography, the type of
land cover and the catchment hydrogeology amongst other factors.
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A Percentage points of microbe concentration

Table 6: 5% Percent points of microbe concentration.
Marked microbe count out of 100

10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 143 78 54 41 34 28 24 22 19 17
50 307 170 119 91 75 63 55 48 43 39
75 471 263 184 143 117 98 86 76 68 61
100 636 356 250 194 159 134 117 104 93 84
125 800 450 317 245 200 171 149 131 118 107
150 964 542 382 298 244 207 180 160 143 130
175 1131 635 450 349 286 244 212 188 169 154
200 1293 729 515 402 328 280 244 217 195 177
225 1460 822 581 453 372 317 276 245 221 201
250 1623 915 649 504 415 353 308 273 246 225
275 1787 1010 715 555 457 390 340 302 272 249
300 1957 1100 779 608 500 426 372 331 299 272
325 2120 1193 847 660 543 462 404 360 324 296
350 2287 1288 911 712 585 499 436 388 351 320
375 2453 1384 978 763 629 536 469 417 376 344
400 2607 1477 1046 815 672 573 501 445 402 368
425 2780 1570 1113 867 715 610 532 474 429 392
450 2933 1663 1179 920 758 646 565 503 454 416
475 3106 1756 1245 971 800 683 597 533 481 440
500 3279 1850 1311 1024 843 719 629 561 507 464



A Percentage points of microbe concentration M114

Table 7: 15% Percent points of microbe concentration.
Marked microbe count out of 100

10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 175 93 64 49 39 33 28 25 22 20
50 364 196 134 102 83 70 60 53 47 43
75 554 300 206 158 128 108 93 82 73 66
100 746 400 277 213 173 145 126 111 99 90
125 936 505 349 268 218 183 159 140 125 114
150 1123 609 421 323 262 222 192 169 152 137
175 1317 712 494 378 308 260 225 199 178 161
200 1508 816 565 434 353 298 258 228 204 185
225 1700 919 636 489 398 337 292 258 231 209
250 1886 1021 708 545 443 375 325 287 257 234
275 2077 1126 781 600 489 413 358 317 284 258
300 2269 1229 852 656 535 452 392 346 311 282
325 2458 1330 924 711 579 490 425 376 338 306
350 2654 1435 994 766 624 528 458 405 364 331
375 2843 1541 1068 821 669 567 492 435 391 355
400 3031 1645 1140 877 716 605 525 465 417 379
425 3223 1746 1211 933 760 644 558 494 444 404
450 3400 1848 1284 988 805 681 592 524 471 428
475 3607 1954 1356 1044 850 720 625 554 498 452
500 3800 2058 1426 1100 896 758 659 583 524 477
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Table 8: Calculated microbe concentration per ten litres
Marked microbe count out of 100

10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 250 125 83 62 50 42 36 31 28 25
50 500 250 167 125 100 83 71 62 56 50
75 750 375 250 188 150 125 107 94 83 75
100 1000 500 333 250 200 167 143 125 111 100
125 1250 625 417 312 250 208 179 156 139 125
150 1500 750 500 375 300 250 214 188 167 150
175 1750 875 583 438 350 292 250 219 194 175
200 2000 1000 667 500 400 333 286 250 222 200
225 2250 1125 750 562 450 375 321 281 250 225
250 2500 1250 833 625 500 417 357 312 278 250
275 2750 1375 917 688 550 458 393 344 306 275
300 3000 1500 1000 750 600 500 429 375 333 300
325 3250 1625 1083 812 650 542 464 406 361 325
350 3500 1750 1167 875 700 583 500 438 389 350
375 3750 1875 1250 938 750 625 536 469 417 375
400 4000 2000 1333 1000 800 667 571 500 444 400
425 4250 2125 1417 1062 850 708 607 531 472 425
450 4500 2250 1500 1125 900 750 643 562 500 450
475 4750 2375 1583 1188 950 792 679 594 528 475
500 5000 2500 1667 1250 1000 833 714 625 556 500
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Table 9: 85% Percent points of microbe concentration
Marked microbe count out of 100

10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 380 169 107 79 62 52 44 38 34 30
50 743 327 208 152 119 98 84 72 64 57
75 1100 486 307 224 176 144 122 106 94 84
100 1467 644 407 295 232 190 161 140 123 110
125 1829 800 504 368 288 236 200 173 153 137
150 2186 960 604 439 343 282 239 206 182 163
175 2557 1117 704 511 400 328 277 240 211 189
200 2914 1272 804 583 455 373 316 273 240 215
225 3286 1433 900 654 511 419 354 306 270 241
250 3629 1587 1000 725 567 464 393 340 299 267
275 3988 1750 1100 797 623 510 431 373 328 292
300 4357 1906 1200 869 679 557 470 405 357 318
325 4714 2062 1296 942 735 602 508 439 386 344
350 5086 2218 1396 1014 790 647 546 472 415 369
375 5457 2380 1496 1085 847 693 584 505 444 395
400 5829 2533 1596 1156 902 739 623 538 472 421
425 6183 2693 1692 1226 958 783 662 571 501 446
450 6514 2856 1792 1303 1013 829 700 604 531 472
475 6886 3012 1892 1371 1070 875 738 637 560 498
500 7229 3169 1988 1442 1126 921 776 671 588 523



A Percentage points of microbe concentration M117

Table 10: 95% Percent points of microbe concentration
Marked microbe count out of 100

10 20 30 40 50 60 70 80 90 100

O
ri
gi
na

lu
nm

ar
ke
d
m
ic
ro
be

co
un

t

25 500 200 126 91 71 58 49 43 38 34
50 980 387 238 170 133 108 91 79 70 62
75 1443 573 348 250 193 157 132 115 101 90
100 1917 757 461 329 253 206 173 149 131 117
125 2383 940 571 406 314 255 214 184 162 144
150 2860 1127 683 484 373 304 255 219 192 171
175 3340 1312 795 563 434 352 295 254 222 197
200 3820 1493 905 641 493 400 335 288 252 224
225 4300 1677 1016 719 555 448 375 323 282 250
250 4780 1850 1125 797 613 496 416 357 312 277
275 5240 2050 1233 875 674 545 456 392 342 303
300 5760 2223 1348 955 734 593 497 425 371 329
325 6220 2415 1457 1032 793 641 536 461 401 355
350 6740 2593 1568 1112 855 689 577 495 431 382
375 7200 2783 1683 1188 913 738 616 529 461 407
400 7720 2964 1791 1266 974 787 658 563 491 434
425 8200 3143 1900 1344 1033 835 698 597 520 460
450 8620 3336 2012 1427 1093 882 738 631 550 485
475 9160 3529 2118 1500 1154 931 778 665 580 511
500 9660 3700 2233 1577 1212 980 818 700 609 537
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