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Abstract

In the solution of Boltzmann’s equation by polynomial expansion
techniques it is important to choose the weight function as close as
possible to the actual distribution function in order to ensure rapid
convergence. In the case of electron motion through neutral gases in
the presence of external electric and magnetic fields, the so-called mo-
ment method has had considerable success. The method is essentially
a polynomial expansion of the electron velocity distribution function
about a Maxwellian weight function at some arbitrary temperature.
By choosing the temperature carefully in order to approximate the ac-
tual distribution adequate convergence can usually be obtained. How-
ever when the interactions between the electrons and the molecules is
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‘soft’ and/or reactive processes cause a significant increase in the popu-
lation of the high energy tail of the distribution function, convergence
of the expansion rapidly deteriorates and may not be achieved. In
this article we investigate the use of a bi-Maxwellian weight function
to improve convergence by the use of a model interaction between the
electrons and molecules. The idea being that a Maxwellian at the
lower temperature should be sufficient to characterise the electrons in
the bulk of the distribution, while a second Maxwellian of smaller am-
plitude but at a some what higher temperature is used to characterised
the electrons in the high energy tail of the distribution.
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1 Introduction

A collection of charged particles moving through a background of neutral gas
molecules under the influence of externally applied fields is referred to as a
swarm. In the presence of an electric field the swarm particles gain energy
from the field and are characterised by a temperature somewhat higher than
the gas temperature. From a theoretical perspective the behaviour of the
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swarm can be described by the Boltzmann equation. Our theoretical un-
derstanding of swarms advanced considerably following the introduction of
two temperature theories for solving the Boltzmann equation [10, 3]. The
two temperature theory is based upon a formal expansion of the electron
or ion velocity distribution in a polynomial series around a suitably chosen
Maxwellian (Gaussian) weight function. Prior to the introduction of two
temperature theories, the expansion was done about a Maxwellian at the
neutral gas temperature. This limited analysis to only weak fields. The
name “two temperature” derives from the fact that the temperature of the
Maxwellian weight function need not be the same as the neutral gas temper-
ature. Although the introduction of the second temperature complicates the
mathematics, the range of field strengths over which analysis can be done is
considerably enhanced. Essentially the idea is that, by choosing the second
temperature carefully, the weight function will be as close as possible to the
actual ion/electron distribution and therefore convergence of the polynomial
expansion will be rapid.

However, in some cases where the collision frequency decreases with en-
ergy, the convergence of the two temperature theory deteriorates and may
fail [8, 4, 9]. In this situation it is believed that the high energy tail of
the actual distribution function is decreasing slower than a Maxwellian.
Skullerud [8] showed that the convergence of any polynomial series about
a Maxwellian will fail in such a case. This led Ness and Viehland [6] to
introduce a polynomial expansion about a bi-Maxwellian weight function.
In this method, the weight function consists of the weighted sum of two
Maxwellians. The lower temperature Maxwellian is used to represent the
bulk of the ions/electrons, while a higher temperature Maxwellian in used
to represent the more energetic particles in the tail of the distribution. The
method proved successful in ion swarm physics, but it has not to date been
applied to electron swarm physics, despite the fact that it may have proved
useful in certain cases [5]. Although there are similarities in electron and
ion swarms, there are important differences which impact on numerical so-
lution of the Boltzmann equation. In particular, the electron-neutral mass
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ratios are around three orders of magnitude less than ion-neutral mass ra-
tios. As a consequence, in colliding with the neutrals, the electron directions
will be rapidly randomised, but they will lose little energy per collision, at
least in the case of elastic collisions. Ions on the other hand will not have
their directions so effectively randomised during collisions with the neutrals,
rather they will tend to maintain the preferred direction of the acceleration
due to the electric field. However, they will lose around half their energy
per collision. Practically this means that electron swarm theories in general
require fewer terms than ions swarm theories to account for anisotropy in
velocity space, but they require considerably more terms in any expansion of
the energy dependence.

In this article we apply the bi-Mawellian method to electron swarms. In
the next section a summary of the theoretical aspects of the method is given.
This is followed by the results for certain model interactions.

2 Theory

The motion of a dilute swarm of electrons moving through a background of
much more dense neutral molecules in the presence of applied fields can be
described by the linear Boltzmann equation

∂f

∂t
+ c · ∂f

∂r
+ a · ∂f

∂c
= −J(f, f0) , (1)

where f(r, c, t) is the single-particle phase space distribution function, which
is a function of position r, velocity c and time t. The acceleration on an
electron due to the external fields is denoted by a. The collision opera-
tor J(f, f0) takes into account binary interaction between the electrons and
neutral, where f0 denotes the neutral molecule distribution function, which is
assumed to be Maxwellian at the gas temperature T0. In this article we con-
sider only conservative collisions between the electrons and neutrals. Robson
and Ness [7] give details of the collision operator.
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Equation (1) is a seven dimensional integro-differential equation which
is solved for f . Once f is obtained all quantities of interest describing the
behaviour of the electron swarm can be determined. For the boundary free
problem, the space-time dependence of f is assumed to have the form

f(r, c, t) =
∑
j=0

f (j)(c) ·
(
− ∂

∂r

)j
n(r, t) , (2)

where the f (j) are tensors of rank j, the dot denotes a j-fold scalar product
and n(r, t) is the electron number density. Substitution of the hydrodynamic
expansion (2) into equation (1) and equating coefficients of (−∂/∂r)j n re-
sults in a hierarchy of equations to solve for the velocity distribution func-
tions f (j)(c), the first two members of which are [2]

a · ∂f
(0)

∂c
+ J(f (0), f0) = 0 , (3)

a · ∂f
(1)

∂c
+ J(f (1), f0) = cf (0). (4)

From each member of the hierarchy the various transport quantities can be
calculated. For example, in the absence of reactive processes, f (0) yields
the swarm mean energy 〈ε〉 and the drift velocity W , while f (1) yields the
diffusion tensor (D) [2];

〈ε〉 =

∫
εf (0)(c) dc , (5)

W =

∫
cf (0)(c) dc , (6)

D =

∫
cf (1)(c) dc . (7)

In equation (5) ε = mc2/2 is the kinetic energy of an electron.

In the moment method of solving any member of the above hierarchy
the velocity dependence of the function f (j) is expanded in terms of Burnett
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functions,

φ[νl]
m (αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2

2

)
Y [l]
m (ĉ) , (8)

where

N2
νl =

2π2/3ν!

Γ(ν + l + 3/2)
, (9)

α2 =
m

kTb
, (10)

S
(ν)
l+1/2 is a Sonine polynomial, and Y

[l]
m (ĉ) is a spherical harmonic with ĉ

denoting the polar angles of c . The Burnett functions are the eigenfunctions
of the collision operator for the case of constant collision frequency (Maxwell
model) and are orthogonal with respect to a Maxwellian weight function,
that is, ∫

w(α, c)φ(νl)
m (αc)φ

[ν′l′]
m′ (αc) dc = δν′νδl′lδm′m , (11)

where

w(α, c) =

(
α2

2π

)3/2

exp

{
−α2c2

2

}
. (12)

Because the Burnett functions are orthogonal with respect to a Maxwellian
function it is expedient to make the expansion

f (j)(c) = w(α, c)
∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νl)
m (α; j)φ[νl]

m (αc) . (13)

In two temperature theories α, that is, Tb is chosen to optimise convergence
of expansion (13). In the case of ions, Tb is set to actual ion temperature [11],
whereas for electron it is left as a free parameter [3].

In the case of a bi-Maxwellian weight function the following expansion is
made

f (j)(c) = [bw(α1, c) + (1− b)w(α2)]
∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νl)
m (α; j)φ[νl]

m (αc) , (14)



2 Theory C224

where

α2
1 =

m

kT1

, (15)

α2
2 =

m

kT2

, (16)

and 0 ≤ b ≤ 1 . In equation (14) α may or may not be related to α1 and α2.
Substitution of expansion (14) into equations (3) and (4), premultiplying

by φ
(ν′l′)
m′ and integrating over all velocities transforms each member of the

hierarchy into a matrix equation which then can be solved for the expansion
coefficients (moments) F

(νl)
m (α; j). In deriving these matrix equations we use

the orthonormal property (11) and the relationship [1]

φ(νl)
m (qc) = [ν!Γ(ν + l + 3/2)]1/2ql

×
n∑
k=0

q2(n−k)(1− q2)k

k![(n− k)!Γ(n− k − l + 3/2)1/2]
φ(ν−kl)
m (c) , (17)

where q is a scalar. Once the expansion coefficients are obtained, the trans-
port coefficients and other quantities of interest can be obtained. If an elec-
tric field E is the only external field present then the drift velocity has only
one component W , that is parallel to E and the diffusion tensor has two
components, one parallel DL and the other perpendicular DT to E.

Practical application of either expansion (13) or expansion (14) requires
truncation of both the l and the ν indices to finite values, lmax and νmax,
say. The choice of lmax and νmax depends upon the convergence requirements
and/or the time limit set for computation. The greater the value of lmax re-
quired for convergence, the greater the anisotropy of the distribution function
in velocity space. The greater the value of νmax required for convergence the
greater the variation of the energy dependence of the distribution function
from the weight function. In the next section, both expansions (13) and (14)
are applied to a simple elastic model and convergence of the transport coef-
ficients in the polynomial index ν are compared.
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3 Results and discussion

Here we present results for a model situation where only elastic collisions
occur. The following model was considered:

σ(ε) = ε−3/4 Å
2

m0 = 4 amu, T0 = 293 K

E/N = 0.2 Td, 1 Td = 10−21 Vm2 ,

where σ(ε) denotes the cross section for collisions between the electrons and
neutrals of impact energy ε, and m0 is the mass of the neutral particles. In
swarm physics the transport processes are controlled by the ratio of elec-
tric field strength to the neutral gas number density, that is, E/N . The
Townsend (Td) is the accepted unit of E/N . The above model represents a
collision frequency decreasing with energy. As E/N increases, convergence
of an expansion about a single Maxwellian weight function becomes increas-
ingly harder to achieve for this model. The value of E/N chosen (0.2 Td) is
close to the limit for convergence of the two temperature theory.

In Figures 1 and 2 the convergence of the transport coefficients is shown as
a function of the ν index for an expansion about a single Maxwellian weight
function for four value of Tb. For this model lmax was set to 3; however,
convergence to four figures was achieved by l = 1 . All four values of Tb are
necessarily somewhat larger than the actual electron temperature of 6,150 K.
In situations where the collision frequency decreases with energy, Tb must
be chosen larger than the actual electron temperature if convergence in the
ν index is to be achieved. This example gives an indication of how much
larger this must be. In this case only the convergence of the swarm mean
energy can be deemed satisfactory. The converged value of the transport co-
efficients, after 60 Sonine polynomials, for each Tb is indicated on the various
curves in Figures 1 and 2. As we proceed from the drift velocity to diffusion
perpendicular to E to diffusion parallel to E the convergence deteriorates.
In particular, we notice that the converged value appears dependent upon



3 Results and discussion C226

10 20 30 40 50 60

0.70

0.72

0.74

0.76

0.78

0.80

Sonine index

M
ea

n 
en

er
gy

 (e
V

)

0.794

10 20 30 40 50 60
5.8

6.0

6.2

6.4

6.6

6.8

7.0

5990

W
 (1

03 m
/s

)

Sonie index

5900
5880

Figure 1: Convergence of the mean energy and drift velocity in the ν index
for single Maxwellian weight functions. (Colour: Tb): (Green: 50000K,),
(Red: 70000K), (Black: 100000K), (Blue: 200000K).
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Figure 2: Convergence of the diffusion coefficients in the ν index for sin-
gle Maxwellian weight functions. (Colour: Tb): (Green: 50000 K,), (Red:
70000 K), (Black: 100000 K), (Blue: 200000 K).
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the choice of Tb. This of course should not be the case. This behaviour is
typical in situations where the interaction between the electron and neutral
are ‘soft’.

In Figures 3 and 4, the convergence of the transport coefficients is shown
as a function of the ν index for expansions about four different bi-Maxwellian
weight functions, the value of T1, T2 and b are indicated on the figures.
For all transport coefficients shown convergence to three or four figure is
achieved between 30 to 40 terms in the Sonine polynomial expansion. This
is considerably better than that for the single Maxwellian weight function.

4 Conclusion

An outline of the motivation and theory behind an expansion of the elec-
tron velocity distribution function about a bi-Maxwellian weight function has
been presented. The theory was applied to a particular model where it was
known that convergence problems for the two temperature (expansion about
a Maxwellian) theory would be encountered. For this particular model the
success of the bi-Maxwellian expansions was demonstrated. The next step is
to apply the technique to real gases, for example, electron transport in water
vapour/fluorine, where it is known that the interactions between the electron
and neutrals are ‘soft’.
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