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Abstract

We discuss a macroscopic study of vehicle traffic dynamics in which
traffic flow is considered as a continuum governed by the kinematic
Lighthill–Whitham–Richard model, with a source term accounting for
traffic entries and exits through a junction. The kinematic model is
solved using finite volume method, with the flux function is approx-
imated using the upwind method. In order to prevent flows which
exceed road capacity and to preserve the positivity of traffic density in
simulations with entries and exits, a stop-go procedure is adopted. The
resulting scheme is used to simulate the responses of traffic density to
light and heavy entrances from a junction, and the dynamics predicted
by the simulations are shown to conform well to analytical solutions.
With a validated numerical algorithm at hand, we simulate traffic
dynamics for several scenarios on a roadway with entrances and exits.
Depending on the rate of exit or entrance and the initial condition,
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density profiles in the form of shock wave and rarefaction wave may
appear.

Subject class: 35L65, 90B20

Keywords: Hyperbolic Conservation Laws, Continuum Traffic Model,
finite volume method
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1 Introduction

In urban areas, a vehicle traffic system consists primarily of a network of
roadways through which traffic flows in and out via junctions. Traffic con-
gestion can occur when vehicles moving along a road segment approach a
junction. The effect of an inflow of vehicles at an entry point along a road is to
introduce a local congestion that may then propagate upstream, whereas the
presence of an exit can help to relieve congestion, leading to a local increase
in traffic speed. Using a standard continuum model, we develop a numerical
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model to simulate such situations, with potential applications in road network
management and design.

Although traffic simulation packages have been in use since the 1960s [11],
modelling and numerical simulation of traffic remain an active area of study,
with various open problems continuing to attract the attention of researchers.
The accurate simulation of traffic inflow and outflow via junctions is one such
question. One widely used numerical model is the cell transmission model.
This method, based on a supply-demand principle, was first proposed by
Daganzo [2] and Lebacque [7], and reviewed by Orosz et al. [10]. Kinematic
wave models of merging traffic have also been studied using this method
by Daganzo [3], Holden and Risebro [6], and Lebacque [7]. Nowadays, for
macro-scale modelling of traffic dynamics, the most commonly adopted model
is the kinematic Lighthill–Whitham–Richards (lwr) model. This model uses
a conservation law to describe traffic on a road segment in terms of traffic
density and flux. In-depth discussions of the lwr model are available in
several textbooks [5, 4, 8]. An analytical study of traffic dynamics at junctions
was presented by Mercier [9], where the interactions between several lanes
of traffic were analyzed. Bagnerini et al. [1] studied the dynamics of traffic
flowing into and out of junctions using a systems of equations analogous to a
fluid dynamics model. In the current study, traffic flows into and out of road
segments via entrance and exit areas which are introduced into the model by
the inclusion of a source term in the kinematic lwr model.

Aiming to enhance the capability of this method to accurately implement
the lwr model with a source term, we adopt a variant of the finite volume
method that uses an upwind approximation for the flux function. Section 2
formulates the kinematic lwr model with a Greenshield flux function, followed
by a description of its consistent discretization. The decision to adopt the
Greenshield flux here is motivated by the availability and simplicity of its
analytical solution; however, the numerical method discussed in this paper
can directly be modified in a straightforward manner to handle other concave
flux functions commonly used for traffic modelling such as the Greenberg,
Underwood, Northwestern, and Pipes–Munjal functions. Section 3 compares
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numerical results obtained using this scheme with analytical solutions. Finally,
in Section 4, we present examples of simulated traffic dynamics under several
scenarios involving exits and entrances.

2 Mathematical model and its discrete
formulation

We consider heavy traffic moving in one direction, say the x-direction. Let-
ting n(x, t) (vehicles/km) represent the traffic density as a function of the
spatial variable x and time t, and invoking a conservation principle leads to
the kinetic lwr equation

nt + f(n)x = β, (1)
in which f (vehicles/hour) denotes the flux of traffic, which is the number
of vehicles passing through a certain position per unit of time. The source
term β(x, t) (vehicles/(kmhour)) denotes the net number of vehicles per km
per hour entering or leaving at a certain position.

In traffic dynamics modelling, traffic flux is typically assumed to depend on
traffic density. This dependence is often approximated using the Greenshield
traffic flux function

f(n) = nVm

(
1−

n

Nm

)
, (2)

where Vm (km/hour) denotes the maximum velocity of vehicles in empty roads,
and Nm (vehicles/km) denotes the maximum capacity of single-lane traffic.
The curves V(n) and f(n) are plotted in Figure 1. While the Greenshield
model may seem simplistic, it nonetheless succeeds in capturing the important
features of traffic flow: flux is zero when traffic density is either zero (n = 0)
or at maximum capacity (n = Nm), and the flux attains its maximum for an
intermediate value of traffic density, n = Nm/2 .

A discrete formulation of (1) on a computational domain [0,X] is formulated
in this paragraph. Let the computational domain be divided into N cells of
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Figure 1: (top) the Greenshield velocity v(n), and (bottom) the corresponding
flux f(n).
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length ∆x in a staggered manner, with partition points x1/2 = 0 , x3/2 = ∆x ,
. . . , xi+1/2 = i∆x , . . . , xN+1/2 = N∆x = X . On the cell Ci = [xi−1/2, xi+1/2],
the finite volume discretization of (1) reads

nj+1
i = nji −

∆t

∆x

(
∗fji+1/2 −

∗fji−1/2

)
+ βji∆t . (3)

Equation (3) states that at every time step tj, the value of ni is to be
updated using the net flux from left and right boundaries, as well as any
internal entrance/exit sources βji∆t. Here, we implement a first-order upwind
approximation for flux ∗fji+1/2: for any time step tj, the signal speed at the
staggered point xi+1/2 is approximated by 1

2

(
f ′i + f

′
i+1

)
, and its sign is used

in the upwind approximation

∗fi+ 1
2
≈

{
fi if 1

2

(
f ′i + f

′
i+1

)
> 0 ,

fi+1 if 1
2

(
f ′i + f

′
i+1

)
< 0 .

(4)

In this upwind approximation, when the signal speed is positive then fji+1/2 ≈
fji = njiVm(1 − nji/Nm), whereas when the signal speed is negative then
fji+1/2 ≈ f

j
i+1 = nji+1Vm(1 − nji+1/Nm), see Figure 2. The value of ni is
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Figure 2: Upwind approximation for ∗fi+1/2; this holds for every time itera-
tion.
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assumed to be constant in cell Ci. The above scheme is stable under the
cfl-like condition Vm∆t/∆x 6 1 . Moreover, as discussed by Mattheij et
al. [8], this scheme can accurately simulate Riemann solutions, including
the propagation of shock waves with the correct speed. Previously [12], the
scheme was used to analyse the performance of traffic lights in comparison
with roundabouts.

In cases where entrances and exits bring about local increases and reductions
in traffic density, in order to ensure that traffic density values n(x, t) remain
between zero and the maximum density Nm, a kind of stop and go procedure
is implemented as follows. For the case βji > 0

nj+1
i =

n
j
i −

∆t
∆x

(
∗fji+1/2 −

∗ fji−1/2

)
+ βji∆t if nji < Nm − βji∆t ,

nji −
∆t
∆x

(
∗fji+1/2 −

∗ fji−1/2

)
otherwise.

(5)

For the case βji < 0

nj+1
i =

n
j
i −

∆t
∆x

(
∗fji+1/2 −

∗ fji−1/2

)
+ βji∆t if |βji|∆t < n

j
i ,

nji −
∆t
∆x

(
∗fji+1/2 −

∗ fji−1/2

)
otherwise.

(6)

Interpretation of (5) is that the cell Ci may receive an entry βji∆t with β
j
i > 0 ,

if its current density nji is still below the maximum Nm, or more precisely
nji < Nm − βji∆t . On the other hand, formula (6) means that vehicles may
exit from cell Ci provided that its current density is such that nji > |βji|∆t .
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3 Validation of numerical simulation with exit
and entrance

In this section, we first discuss the analytical solution that is used to validate
our numerical results. Applying the method of characteristics to (1), we find
that along the characteristic dx

dt
= f ′(n), the value n(x, t) changes according

to dn
dt

= β . When β(x, t) = β0 is constant, the characteristic method
yield an explicit formula. Detailed descriptions of this approach are widely
available [5], but we review the method here for clarity. Considering the
method of characteristics applied to (1) with initial condition n(x, 0) = n0 .
Along the characteristic curve, the value of n grows linearly in time as
n(x(t), t) = β0t + n0 . Moreover, given this explicit function of n, the
differential equation for the characteristic curve reads

dx

dt
= Vm

(
1−

2β0t+ 2n0

Nm

)
, (7)

which is solved to yield the characteristic parabola

x(t) = Vm

(
1−

2n0

Nm

)
t− β0

Vm

Nm
t2 + C . (8)

We consider a roadway of length X, of which the left section is a junction from
which vehicles may enter or exit the roadway. The junction extends from
position 0 until XE, with XE < X . First, we assume that exits and entrances
occur at a constant rate β0. The mathematical model for this case is pde (1)
with

β =

{
β0, for 0 < x < XE ,
0, for x > XE .

(9)

Next, we study how traffic density evolves as a result of entrances along
0 < x < XE . For this purpose, we take an empty roadway state n(x, 0) = 0
as the initial condition.
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Figure 3: A sketch of characteristic curves for the low entrance rate case,
0 < β0 < VmNm/4XE .
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Initially, areas x 6 0 and x > XE are quiet zones, in these areas, the
characteristic are straight lines with gradient dx/dt = Vm , see Figure 3.
In the entrance area, the characteristic curves emanating from (ξ, 0), with
0 < ξ < XE , are parabolas

x(t) = Vmt− β0
Vm

Nm
t2 + ξ .

Along this parabola, traffic density increases linearly in time as n = β0t .
After leaving the entrance region, the characteristic curves become straight
lines with gradient f ′(β0t). Let the parabola emanating from x = 0 at time
t = 0 be denoted as

xO(t) = Vmt− β0
Vm

Nm
t2. (10)

This parabola crosses x = XE at time t = TE , with

TE =

(
1−

√
1− 4β0XE

NmVm

)
Nm

2β0

. (11)

Characteristics emanating from (0, τ), with τ > 0 , are parabolas

x(t) = Vm(t− τ) − β0
Vm

Nm
(t− τ)2.
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Together with the parabola xO(t), these parabolas straighten out to become
lines with gradient f ′(β0TE). Figure 3 plots the characteristic curves in
the xt-plane.

Once the characteristics are obtained, the corresponding analytical solutions
are then constructed. Along the parabolae, traffic density increases linearly in
time, whereas along the straight continuation lines, traffic density is constant.
As an example, along the parabola xO(t) the zero initial traffic density grows
linearly in time until time TE, at which point traffic density reaches the value
n(TE) = β0TE . After that, for times t > TE , traffic density remains constant
along the straight characteristic lines with gradient dx/dt = f ′(β0t). Here
we simulate two conditions: one with a relatively light influx of entrances;
and another with a relatively heavy influx of entrances.

Light entrance case We construct a computational domain over the inter-
val [0,X = 30], with an entrance region spanning [0,XE = 5]. For the simula-
tion, we use normalized parameters Nm = 1 , Vm = 1 , with ∆x = ∆t = 0.005 .
In the entrance region, traffic enters at a constant rate β0, and (3) is im-
plemented using βji = 0.04 . The resulting traffic densities computed for
subsequent times are plotted in Figure 4 (top). The analytical solutions are
shown alongside these numerical results for validation.

Beginning directly from the outset, traffic density in the entrance region [0,XE]
increases. As time progresses, it continues to increase until finally traffic enters
the downstream area x > XE in the form of a rarefaction wave. The time at
which the characteristic crosses XE = 5, TE = 6.9098 , agrees with the value
from the analytical formula (11). Figure 4 (bottom) displays the contour plot
of the calculated traffic density and the characteristic parabola xO(t). Here,
the parabola xO(t) visibly crosses through the contours precisely at their
corners, which again confirms the calculated traffic density profile n(x, t). As
time progresses, we also calculate the total traffic volume of the computed
traffic density, defined as Vol(tj) ≡

∑N
i=1 n(xi, tj)∆x , and it confirms the
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Figure 4: Simulation of the light entrance case: (top) traffic density at
subsequent times t = 3, 5, TE, 10, 15 from numeric (solid lines) and analytic
(crosses); (below) contour plots of numerical traffic density together with the
characteristic parabola xO(t).

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

x

T
ra

ffi
c 

de
ns

ity

 

 

Numeric
Analitic

x

t

 

 

0 5 10 15
0

5

10

15

0.05

0.1

0.15

0.2

0.25



4 Impact of exits and entrances to the main road E11

analytical formula

Vol(t) =

{
β0XEt 0 < t < TE ,

β0XETE t > TE .

Heavy entrance case In this second simulation, we use the same parame-
ter values as in the previous simulation (Vm = 1, Nm = 1, and XE = 5), but
now we consider a somewhat heavier entrance rate of βji = 0.08 . Figure 5
presents the calculated traffic density. As time progresses, the traffic density
continuously builds up until it reaches half of the maximum density Nm/2,
which then induces a backward-propagating signal. For the simulation dis-
played in Figure 5, the stop-go procedure plays an important role in preventing
traffic densities from increasing beyond the maximum capacity Nm.

4 Impact of exits and entrances to the main
road

The previous section validates the scheme for scenarios involving light and
heavy entrance rates. In this section we conduct simulations on a rather long
road segment with a section containing an exit-entrance region, and we are in-
terested on traffic density after a long simulation time. We investigate two dis-
tinct types of exit-entrance influx: constant rate and Poisson-distributed rate.

Consider a main road with traffic running to the right. As time progresses,
traffic density evolves in response to exits and entrances from the junction.
Here, we implement the scheme (3) on a computational domain [−X,X], with
a junction or exit-entrance area located on the interval [0,XE] ilustrated in
Figure 6. In all figures in this section, exits-entrances areas are expressed
in green.
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Figure 5: Simulation of the heavy entrance case at time t = 30 : (top) numer-
ical traffic density at subsequent times; and (bottom) their contours.
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Figure 6: Sketch of a roadway.
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Simulations were conducted using X = 6 and XE = 0.2 , with ∆x = 0.01
and ∆t = ∆x/Vm to ensure stability, and again adopting the normalized
parameters Nm = 1 and Vm = 1 . In the first case, the discrete model (3) is
implemented using βji = 0.6 for all xi ∈ [0,XE = 0.2]. This entrance gives a
total entrance flux f = 0.6XE = 0.12 for each time unit. For the parabolic flux
function (2), two traffic densities n1 = 0.1394 and n2 = 0.8605 correspond to
this entrance flux, representing low and high densities, respectively. Starting
with the initial traffic density n(x, 0)/Nm = 0.5 , the entrance induces an
additional flux that evolves into a backward-propagating shock wave with
speed determined by the Rankine–Hugoniot formula (f(n2)−f(0.5))/(n2−0.5).
The effect of entrance rate βji = 0.6 for xi ∈ [0,XE] to the initial density
n(x, 0)/Nm = 0.5 is shown on n(x, 8)/Nm as plotted in Figure 7 (top). On
the other hand, the effect of exit rate βji = −0.6 for xi ∈ [0,XE] given the
initial density n(x, 0)/Nm = 0.5 is to induce a forward-propagating shock
wave as shown in Figure 7 (bottom). The speed of this forward propagating
shock wave is determined by (f(n1) − f(0.5))/(n1 − 0.5).
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Figure 7: Traffic density n/Nm after 800 time iteration, showing the effects
of exits or entrances on the initial traffic density n(x, 0)/Nm = 0.5 (dash dot
black line). Exit-entrance parameters; a constant rate βji = 0.6 (blue dashed
curves), the Poisson distributed rate with the expected parameter µ = 44
vehicles per hour (red solid curves).
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Figure 8: Traffic density n/Nm after 800 time iteration, showing the effect
of entrances on the initial density n(x, 0)/Nm = 0.3 (top), and exits on
the initial density n(x, 0)/Nm = 0.7 (bottom). Exit-entrance parameters; a
constant rate βji = 0.6 (blue dashed curves), the Poisson distributed rate with
the expected parameter µ = 44 vehicles per hour (red solid curves).

x-6 -4 -2 0 2 4 6

tr
af

fic
 d

en
si

ty
 n

/N
m

0

0.2

0.4

0.6

0.8

1
Initial density
Constant rate
Poisson distr.

x-6 -4 -2 0 2 4 6

tr
af

fic
 d

en
si

ty
 n

/N
m

0

0.2

0.4

0.6

0.8

1
Initial density
Constant rate
Poisson distr.



4 Impact of exits and entrances to the main road E16

Table 1: Height and speed of the numerical shock wave of traffic density
compare with the analytical prediction.

Numeric Analytic error (%)
low density (n1) 0.1489 0.1394 0.6
(forward) speed 2.86/8 = 0.3575 0.3606 0.8
high density (n2) 0.8549 0.8605 0.6
(backward) speed (−2.67− XE)/8 = −0.3587 −0.3605 0.5

Further, we show that the shock wave in our simulations agree with the
analytical prediction. Agreement is encountered on the shock wave height,
as well as its speed. As shown in Figure 7 (bottom) the shock wave height
is 0.1489, which approximates the low density n1 to within 0.6% accuracy.
Moreover, the shock wave front of η(x, 8)/Nm is located at x = 2.86 which
results in a shock wave speed 2.86/8 = 0.3575 . This numerical shock speed
confirms the analytical shock speed (f(n1) − f(0.5))/(n1 − 0.5) = 0.3606
within 0.8% accuracy. Quantitative comparison is also conducted for the high
density shock wave n2. The results summarised in Table 1 show that the
speed of traffic density propagation is computed accurately. Moreover, our
simulation results show a good quantitative agreement with the analytical
predictions with error less than 1%.

Furthermore, when the initial density is taken to be n(x, 0)/Nm = 0.3
(Figure 8, top), in addition to the backward propagating shock wave with
height n2, the entrances also induce a forward propagating rarefaction wave
in the downstream area x > XE . Another simulation using the initial
traffic density n(x, 0)/Nm = 0.7 with the same exit rate induces signals
that propagate both to the right and to the left (Figure 8, bottom).

Similar results are obtained when the above computations are repeated using
physical parameters Nm = 150 vehicles/km and Vm = 50 km/hour on the
same computational domain with X = 6 km and XE = 0.2 km. Computations
of (3) were conducted using ∆x = 0.01 , where for stability reasons we set
∆t = ∆x/Vm = 0.01/50 hour = 0.7 sec. Starting from the initial density
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n(x, 0)/Nm = 0.5 , the same left-propagating shock wave appear in response
to traffic entrances with βji∆t = 0.6Nm/Vm = 90/Vm = 1.8 vehicles per cell
per time iteration. The resulting traffic density after 800 time iterations,
n(x, t = 0.16 hour)/Nm , is exactly the same as the traffic density calculated
using the normalized parameters, and in Figure 7 they are both plotted as a
single blue dashed curve.

Next, we present another simulation using a Poisson-distributed entrance rate
with the probability density function

p(x) =
µxe−µ

x!
, (12)

with the expected value µ denoting the number of vehicles arriving in a given
time interval. Comparable results to those of the deterministic case will be
obtained if we choose µ = 44 vehicles per cell per time iteration, since the
expected value µ should be close to the entrance rate of 0.6Nm = 90 vehicles
per cell per time iteration. In Figure 7, the solid red curve shows the traffic
density after 800 time iterations, n(x, t = 0.16 hour)/Nm , resulting from the
Poisson-distributed exit-entrance rate.

Alike computations with identical physical parameters and Poisson-distributed
entrance rates were conducted using the initial density n(x, 0)/Nm = 0.3 , and
again the same phenomenon is observed (Figure 8, top): the entrance induces
a backward-propagating shock wave and a forward-propagating rarefaction
wave. Computation was repeated for exit with the same rate βji = −0.6
using initial conditions n(x, 0)/Nm = 0.7 . The computed traffic density
after 800 time iterations is plotted in Figure 8 (bottom). Based on these
simulations, we conclude that the deterministic results are comparable with
those obtained from the Poisson-distributed stochastic model; both exhibit
similar characteristics of traffic congestion and diffusion.
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4.1 More experiments with exits and entrances

Various simulations were conducted to observe the effects of exits and entrances
from two successive junctions. A computational domain [−X, 2X] is considered
with two junctions located on [0,XE] and [X,X+ XE]: in figures these areas
are indicated in green. The same normalized parameters were used as in the
previous simulations, but here we select βji = 0.15 , and conduct computations
using X = 6 and XE = 0.2 , and the result is given in Figure 9 (top). As
time progresses, the initial traffic density n(x, 0)/Nm = 0.3 changes due to
entrances. This higher-density traffic continues to travel to the right until
it reaches the second junction, from which points exits begin to occur with
the same rate βji = −0.15 . The outcome is that the net traffic density on
the downstream part of the domain [X + XE, 2X] is nearly the same as the
initial traffic density n(x, 0)/Nm, which is to be expected. Figure 9 (bottom)
presents a similar result, but now starting from an initial traffic density
n(x, 0)/Nm = 0.7 , and traffic exits from the first junction and enters at
the second junction with the same rate. Simulation result shows that the
low exit rate on high initial density only affects the upstream part, leaving
the downstream part unchanged, as expected. For the two cases above,
computations were also conducted using Poisson-distributed exit and entrance
rates, and both results show a good match with those of constant rate exit
entrance cases.

Figures 10 and 11 present another simulation but using a higher exit entrance
rate. In Figure 10 (top) a high entrance rate βji = 0.6 on [X,X+ XE] induces
a high traffic density in the form of a shock wave that propagates to the
left, as well as a rarefaction wave that propagates to the right. Once the
rarefaction wave arrives at the second junction [X,X+ XE], traffic exit with
the same rate βji = −0.6 so that traffic density back to the initial value
n(x, 0)/Nm = 0.3 . Figure 10(bottom) presents the other way around; exit
followed by an entrance of the same rate, conducted using an initial traffic
density n(x, 0)/Nm = 0.7 . Here the low density propagates into the middle
part of the domain, whereas a rarefaction wave propagates to the left.
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Figure 9: Snapshots of traffic density using β = ±0.15 at subsequent times
after 100, 500 time iterations, and final time iteration 2000. Changes of traffic
density are due to entrances on [0,XE] and later exits on [X,X+ XE] (top),
and due to exits on [0,XE] and later entrances on [X,X+ XE] (bottom).
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Figure 10: Snapshots of traffic density using β = ±0.6 at subsequent times
(after 100, 500 and 2000 time iterations); (top) due to entrances on [0,XE] and
later exits on [X,X+XE], (bottom) due to exits on [0,XE] and later entrances
on [X,X+ XE].
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Figure 11 presents similar phenomena as the outcome of simulation using
much higher exit entrance rate βji = 1.5 . In these simulations, the stop and go
procedure (5)–(6) is crucial to ensure the computed traffic density n(x, t)/Nm
remains between zero and one. All simulations above were calculated using
both a constant rate and a Poisson-distributed exit and entrance rates. The
good agreement between both approaches support the idea that a deterministic
approach can be used for analysing stochastic traffic dynamics problems.

5 Conclusions

We proposed a conservative finite volume scheme with an upwind approxima-
tion for the flux function to solve the kinematic lwr model with a source term.
A kind of stop-go procedure was successfully implemented in order to restrict
traffic density values to fall between zero and the maximum-capacity value
in the simulations. The numerical method is stable, and the traffic densities
which evolve in response to a light (and heavy) entrance rates are shown to
conform closely to previous analytical results. In addition, for a long time
simulation, compliance with analytical formula were obtained for the height
and speed of the shock wave of traffic density. From further simulations
involving exits and entrances, we found that in low traffic density, a low
entrance rate would induce a right propagated rarefaction wave, whereas a
high entrance rate would induce an additional left propagating shock wave. In
high traffic density, a low exit rate would induce a left propagated rarefaction
wave, whereas a high exit rate would induce an additional right propagating
shock wave. The above results hold for simulations conducted using constant
exit/entrance rates as well as Poisson-distributed rates.
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Figure 11: Snapshots of traffic density using β = ±1.5 at subsequent times
(after 100, 500 and 2000 time iterations); (top) due to entrances on [0,XE] and
later exits on [X,X+XE], (bottom) due to exits on [0,XE] and later entrances
on [X,X+ XE].
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