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Abstract

Finite difference approximations for fractional derivatives based
on Griinwald formula are well known to be of first order accuracy,
but display unstable solutions with known numerical methods. The
shifted form of the Griinwald approximation removes this instability
and keeps the same first order accuracy. Higher order approxima-
tions have been obtained by convex combinations of various shifted
Griinwald approximations. Recently, a second order shifted Griinwald
type approximation was constructed algebraically through a generating
function. In this paper, we derive a new third order approximation
from this second order approximation by preconditioning the fractional
differential operator. This approximation is used with Crank-Nicolson
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numerical scheme to approximate the solutions of space-fractional diffu-
sion equations by the same preconditioning. Stability and convergence
of the numerical scheme are analysed, supported by numerical results
showing third order convergence.
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1 Introduction

Fractional integral and fractional derivative (FD) are extensions of the integer
order integrals and derivatives to a real or complex order. FD is suitable to
describe anomalous transport in an external field derived from the continuous
time random walk [2], resulting in a fractional diffusion equation (FDE).
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The FDE involves fractional derivatives either in time, in space or in both
variables.

Among various definitions of FD, the Griinwald-Letnikov (G-L) definition and
its Griinwald approximation are commonly used in numerical computations.
We start with the left(—) and right(4) G-L definitions with shift r for FD of
a function f(x) defined in R.

DX f(x) = %ﬂ%ﬁz g\ (k—1)h), (1)

where gl(;x) = (—1)"(?) = (—1)k% with gamma function I'(-). The

classical G-L definitions have no shift and hence are given by (1) with r = 0.
The coefficients g]({“) are the coefficients of the binomial expansion of the
generating function Wi(z) = (1 — z)*.

For a fixed h > 0, the Griinwald approximations are obtained by simply
dropping the limit in the G-L definition given in equation (1).

When f(x) is defined in an interval [a,b], it is zero-extended outside the
interval to adopt these definitions and approximations. The upper limit
infinity of the sum in (1) is then restricted to N + v, where N = [(x — a)/h]
and N = [(b — x)/h] for the left and right approximations respectively, with
[y] denoting the integer part of y. The addition of r in the upper limit is to
cover all the discrete points from x to the relevant boundary of the interval.

Use of this approximation in FDEs results in unstable solutions when Euler,
implicit Euler and even Crank-Nicolson (C-N) numerical schemes are em-
ployed. The last two schemes are well known for unconditional stability in
classical diffusion problems. Meerchaert et al. [5] showed that the approxi-
mations with shift r = 1 removes this instability, but the order of accuracy
remains equal to one.

Earlier, Lubich [4] obtained higher order approximations for FD up to order six
based on backward multi-step methods for initial value problems. Experiments
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show that these approximations also suffer the same instability as in the first
order case. When a shifted form for these approximations is used, though the
stability is restored, the orders of the approximations drop to one for all the
six cases making them unusable for higher order numerical schemes [7].

The search for higher order approximations with shifts has attracted many
researchers recently. Nasir et al. [6] obtained a second order approximation
through a non-integer shift in the Griinwald approximation, displaying super
convergence. Convex combinations of various shifts of the shifted Griinwald
approximation were used to obtain higher order approximations in Chinese
schools [8, 9, 10, 11]. Baeumer et al. [1] considered convex combinations of
shifted Griinwald approximation with different step sizes and extrapolated to
obtain higher order approximations and analysed their stability and order of
convergence based on the smoothness of an approximated function. All these
higher order approximations are obtained by manipulating the first order
shifted Griinwald approximation only.

A generalisation of the concept of shifted Griinwald approximation by iden-
tifying it with a generating function has previously been proposed in [7],
and a generating function for a second order approximation with shift was
constructed, analysed and used to solve fractional diffusion problems.

In this paper, firstly, we construct a third order shifted Griinwald type ap-
proximation from this second order generating function (Section 2). Secondly,
the C-N scheme and its stability for sufficiently smooth functions are anal-
ysed (Section 3). Thirdly, we test our scheme for examples with sufficiently
smooth solutions (Section 4). We also check the effect of smoothness of the
approximated function on the order of convergence to see if the results in [1]
are achieved in our case as well.
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2 Generalised Griinwald approximations

We derived some higher order Griinwald type approximations that retain
their higher orders with non-zero shifts [7]. Among them, the second order
approximation was shown to be reliable for stability and approximation
order. We give the definitions and theorems used to construct higher order
approximations in |7].

For a sufficiently smooth function f(x) and generic weights w](:‘r), define the
left and right Griinwald type operators with shift r as

l & (o
Aberf(6) = > wlfxF (k—1)h). (2)
k=0

Definition 1. A sequence {w](f‘r)} of real numbers, or its generating function

Wi(z) =3 1, w](:;)zk, is said to approximate the left and right fractional
derivatives D at x with shift v in the sense of Griinwald if

DEF(x) = lim Ay, f(x).

The sequence is said to approximate D with order p > 1 and shift v if

Di-f(x) = Ap+ . f(x) + O(hP). (3)
In the latter case, we denote the generating function as Wp, ;(z) and the
approximation operator as Af_ . f(x).

An equivalent characterisation of the approximating generator W,, .(z) with
order p > 1 and shift r is given by the following Theorem |7].

Theorem 2. Let n = [«] + 1, m a non-negative integer, f(x) € C™ T H1(R)
and D¥f(x) = d*/dx*f(x) € L1(R) for 0 < k <m+n+ 1. Then, the gener-
ating function Wy, +(z) approzimates the left and right fractional differential
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operator D3 with order p and shift v, 1 < p < m, if and only if
1
G.(z) := _Wp,r(eiz)erz

is analytic in a neighbourhood |z| < R for some R > 1 and
G, (z) =14+ 0(zP). (4)
Moreover, if Gy(z) =1+ 3 2 el (r)z', we have
Apzpf(x) = D,‘ijf(x) +hPap,DgPf(x) + -+ O(h™). (5)

An immediate consequence of this is the following consistency condition.

Corollary 3. [7] If the generating function W, (z) approximates the fractional
differential operators, then W, (1) = 0.

In [7], we constructed algebraically some higher order approximating generat-
ing functions of the form W, +(z) = (Bo+PBiz+---+ szp) using Theorem 2.
This was achieved from the Taylor series expansion G,(z) = Y =, aiz' by
setting the constrains ag = 1,a; = 0,1 <1 < p—1, along w1th the consistency
condition Bg + 1 + -+ + Bp = 0 from Corollary 3, and solving the resulting
linear system for f3;.

An order 2 approximating generating function W ,(z) = (Bo + B1z + B223)"
was constructed yielding 3o = % —A, B1=—242\ and By = % — A,
where A = r/x. We then have from Theorem 2, equation (5),

AR L of(x) = D f(x) + O(h?). (6)

Note that when there is no shift, W, .(z) becomes the second order generator
Wao(z) = (3/2—2z+ 22/2)“ given in Lubich [4]. This is true for all the
generators Wy, (z),1 < p < 6. Hence, our higher order generators are
extensions of the Lubich generators with shifts.
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2.1 A new third order approximation

Our main result here is that the operator AfL , in (6) can be used to
approximate a preconditioned operator PyDF. with order 3 accuracy by
retaining the term of h? in (6). In fact, we have from (6),

AR of(x) = DEF(x) + aph?D2E*(x) + O(h?),
= (I+ axh?D2)D f(x) + O(h?),

= P.Df(x) + O(h?), (7)
where P, = (I + h?a;D2) and I denotes the identity operator. The coefficient
ay in this case is given by ay = —5 + 71— %

When r = 1, the differential operator D? is approximated by the central
difference operator 87 f(x) = 7z (f(x —h) — 2f(x) + f(x + h)) with D2f(x) =
82 f(x) + O(h?). From this, an approximation for the operator P, is obtained
as

P.f(x) = (I + a;h?D?)f(x) = (I + ah?(8} + O(h?))f(x),
= (I 4+ ayh?8})f(x) + O(h?),
= Pnf(x) + O(h'), (8)

where
Pn = (I+ a2h25$1)- (9)

We, therefore, have from (7) and (8),

AY 1 of(x) = (Pn + O(W))DLf(x) + O(h?),
= PnDZ f(x) + O(h?). (10)

This approach is analogous to that of Hao et al.|3]|, where they used convex
combinations of three shifted operators from the first order Griinwald approx-
imations Wi (z) resulting in a different approximation operator. In our case,
the same second order approximation operator Af_ , , is used to obtain a
third order accuracy for a preconditioned operator PrDJ.
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3 Fractional diffusion equation

We consider the numerical approximation of the space fractional diffusion
problem in the domain [a, b] x [0, T]:

2,
ot
u(x,0) = so(x);

u(a, t) = ¢1(t), u(b, t) = do(t),

where u(x.t) is the unknown function to be determined; K;, Ky are non-
negative constant diffusion coefficients with K; + Ky # 0, i.e, not both are
simultaneously zero, and f(x,t) is a known source term. The boundary
conditions are set as follows: For 1 = 1,2, if K; # 0, then ¢i(t) = 0. We
assume that the diffusion problem (11) has a unique solution.

(x,t) = KyDZ u(x, t) + KoaDZ u(x, t) 4 f(x, t), (11)

To obtain a third order approximation with the use of (7), we first pre-multiply

the equation (11) by Py, in equation (9) to get

ou(x,t)
ot

The preconditioned left and right FDs are then approximated by A%+ ;| su(x, t)
respectively with order 3 accuracy established in Subsection 2.1.

Prn

= K{PnDJ u(x, t) + KoPr DY u(x, t) + Prf(x, t).

ou(x,t)

P
"ot

= KiAF oulx, t) + KoAf, | yu(x, t) + Prf(x, t) + O(R?),

=: Bru(x,t) + Prf(x, t) + O(h?).

Approximating the time derivative with the second order C-N scheme gives
1 1 T

P (ulx, tH1)—ulx, 1) = 5Br(ulx, t)+ulx, t40)+Puf(x, t435)+0(R'+77).

Discretise the domain [a, b] x [0, T] with size N x M by choosing step sizes
h = (b—a)/N,t = T/M and grid points (xi,ty), where x; = a + ih,
tm=mT7,0<i<N, 0<m<M.
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. 1/2
Denoting wf = w(xi, tm)s tms1/2 = & (tmartm) and 772 = f(x;, i o),

the C-N scheme in matrix form with U™ = [uf*,u™, -, ul]’, FH/2 =
(L2 g2 L eI after re-arranging, reads,

(Po — B U™ = (P, + B )U™ + TP F™ /2 L O(t(h® +12)),  (12)

where Py = Trilas, 1 — 2ay, as] is a tridiagonal matrix of size (N + 1) corre-
sponding to Py, Bx = 5(K{A s + KQAIQ), where A and A1T72 are toeplitz
matrices corresponding to the left and right approximation operators Af- ; ,
respectively with Ajo = [Wi_ji11)(N+1)x(N+1)- Imposing boundary condi-
tions and discarding the remainder term, we have

~

(P — Bo)U™ ! = (Py + Bo)U™ 4+ tP F™ 2 4 5™ m=0,1,--- ,M—1,

(13)
where the hatted matrices and vectors are the (N — 1) sized reduced forms
by deleting the first and the last rows and/or columns of their counterparts
n (12). The vector b™ corresponds to the boundary Conditions given by
b™ = (P +Bo)od™ + (Po+Ba)NDF — (Pa —Bo)od ' — (Pu—Bo )N,
where the subscripts 0 and N denote the first and last columns of relevant
matrices reduced to size (N — 1) as above.

3.1 Stability and convergence
For stability of the C-N scheme (12), we closely follow the analysis in [3] and
present some required results.

Let Vi, = {vlv = (v, V1, - ,Vn), Vi € R,vg = vy = 0} be the space of grid
functions in the computational domain in space interval [a, b].
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For any u,v € V4, define the discrete inner products and norms as

N-1
:hzuivh ||U.|| = ('LL"LL),
i1
N-1
(8nw,8nv) =h Y (Snwi—1/2)(Bnvioise) and  [uly = /(5nu, Snu).
im1

Then, we have the following lemmas [7].

Lemma 4. Let {tzi )%, be a double sided real sequence such that

(i)t +t =0 fork #0 , (u)z Nt <0 for N> 0.
Then, the toeplitz matrices Tn = [ti—] Of size (N + 1) are negative definite.

Lemma 5. The operators Ay | 5 are negative definite for 1 < o < 2 and
hence Ay = KiAY_ 15+ KoAf, 4 5 is negative definite.

In addition, we have

Lemma 6. The operator Py is self-adjoint and (Pru,u) =: |[u||3 satisfies
slhull? < fufld < fuf®.

Proof: (Phu,v) = ((I+h?ad)u,v) = (u,v) + h%ax(8iu,v) = (u,v) —
h?ay (dnu, nv) = (u,v) + h?az(u, 82v) = (u, (I + h?ad3)v) = (u, Ppv).

Moreover, for 1 < o < 2, we easily see that, with r =1, a; = —% +1— %‘
satisfies L+ 5 < a<1— ‘gé < %

Also, Julf < ||5hu||||u|| <l S0 (i — 2w +wi) | Ju]) < 55wl
Now, (Prhu,u) = (u,u) + h?ay(82u,u) = [lul®> — h2aalul? < JJufl®.
Again, (Pru,u) = [u]|? — h2asfulf > [Jul®> — 2{[ul]* = £[u? )
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Theorem 7. Let v?™ = (V{*, vi*,--- ,v{{_,) be the solution of the problem

PRy 2 ARV =S 1KASKN =T, 0<m <M1, (14)

1 0

O =v0(x;), 0<i<gN.

1

Then, V™| < V5 (W]l + VBT L ISH]) , where St = [S},85, -+, S§_IT.

m o m __
vo =0, vg=0, v

m+1/2

Proof: Applying inner product on (14) with v and, from Lemma 5,

using (A$v™H1/2 ymH1l/2) () gives

(Phétvm+1/2’vm+l/2) — (Agcvm—i—l/Q’vm+1/2)_’_(sm’vm+1/2) < (Sm’vm+1/2)‘

Also,
1 1
(Phétvm+1/2’vm+l/2) — (Ph;(\)m_H _vm)’ §(vm+1 +vm)) :
1
= 2—T(||Vm+1||12> — [V™I3),

(S™, V™ H2) LY IS™ v,
VB[IS™ V™2,
V5

< 7||5m|| (V™ e + [v™p) -

<
<

The inequality in the second and last lines reduces, for 0 < m < M — 1, to
V™ < [[v™|p + v/5T||S™||. Summing this for the first m inequalities, we
have [v™|p < [VOlp + VBT X1 ISY], 1 < m < M — 1. Equivalence of the

two norms concludes [|[v™|| < v/5 (HVOH +v5t Yt H51H> : '

From the above estimates, we have the following stability and convergence
results.
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Theorem 8. The C-N scheme (12) is unconditionally stable for 1 < o0 < 2.

Theorem 9. The approximate solutions of the C-N scheme (12) with the
gen initial and boundary conditions are convergent for 1 < o < 2.

Proof: Let e™ = u™ — U™ be the error vector of the solutions, where
um,ﬂm are the exact and approximate solution vectors of the diffusion
problem (11). Then the error of the internal grid values e™ satisfies the
system

Prbe —Age;““/? =R™ 1<i<N-1, 0<m<M—1,

eg- =0, ey =0 e =0, 0<ig<N.

Theorem 7 then gives the estimate [[e™|| < 513", [IRY| < 5¢TN(T2 + h?).
The convergence is then established as h,t — 0. [ )

4 Numerical results

We test our order 3 approximation through a steady state problem and a time
dependent diffusion problem for a range of exact solutions that are sufficiently
smooth to realise the order 3 approximations and that are not sufficiently
smooth to see if any reduction in order mentioned in [1] is detected.

Example 1. Consider the steady state fractional diffusion problem with left
fractional derivative D¥ u(x) =x"T'(y+a+1)/T(y+1), u(0) =0, with
exact solution u(x) =x¥"* 0<x<1, 0<y<6and1< a<2 Note
that DPu(x) € L1[0,1] for B < v+ o« + 1.

This steady state test problem was approximated by C-N numerical scheme
(13) for 21 selected equi-spaced discrete power values in the range 0 <y < 6.
The maximum error Ey = |Ju — Ul|,, and the orders of convergence were
computed for values of o« = 1.1, 1.5 and 1.8 with space partition sizes N = 256
and 512. Figure 1 shows the plots of the orders of convergence against the
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power y. This indicates that the convergence order is achieved only for
sufficiently smooth functions and is reduced for less-smooth functions. This
phenomenon requires an analogous analysis as given in [1] with our third
order approximation.

Example 2. Consider the test example for the fractional diffusion problem
(11). Let G(x, m, o) = M (xm—ec (] _x)m—e) and s4(x) = x*(1 —x)°

Nn+l—o)
with the following data:

Diffusion coefficients: K; =1,Ky =1,
Source function: f(x,t) = —e *(so(x) + G(x, 5, &) — 5G(x, 6, )+
10G(x, 7, ) —10G(x, 8, o) + 5G(x,9, o) — G(x, 10, «)),

Initial condition: u(x,0) = So(x)
Boundary conditions: u(0,t) = u(l,t) =0.
Exact Solution: wu(x,t) = so(x)e’t.

N

N

w
L

g

o

S
s

Order of convergence

0 1 2 3 4
powery: 0<=y< =6

Figure 1: Convergence orders for Example 1
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The space domain is partitioned with size N and the time domain is partitioned
with size M = [N3/2] + 1. The choice of time partition is to realise the order
3 with the C-N scheme of original order 2. The order p is computed by
the formula p,, = log (||[E™||eo/[[E™ *|e0)/log 2 for n =4,5,--- |9, where the
error E" =u™ — U™,

The test results listed in Tables 1 show that the order 3 convergence is achieved
for the sufficiently smooth exact solution.

a=1.1 =15 =19
N=1/h M=1/t |E"|w Order [[E"|eo Order [[EM||s  Order
16 65 1.9e-06 - 7.2e-07 - 2.9e-08 -
32 182 2.4e-07 2.97  9.1e-08 2.99 2.7e-09  3.40
64 513 3.1e-08  2.99 1.1e-08  3.00 5.3e-10  2.35
128 1449  3.9e-09 2.99 1.4e-09  3.00 7.9e-11  2.76
256 4097  4.9e-10  3.00 1.7e-10  3.00 1.0e-11  2.90

512 11586 6.1e-11  3.00 2.2e-11  3.00 1.3e-12  2.95

Table 1: Order 3 convergence of C-N type scheme

5 Conclusion

A new third order approximation for fractional derivative was developed
using a second order approximation with a pre-conditioner operator. A C-N
numerical scheme for this approximation to solve FDE was devised with proof
of stability and convergence. The theoretical predictions were tested and
verified for fractional diffusion problems through examples with sufficiently
smooth solutions and less-smooth solutions
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