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Using Green’s functions and split Gaussian
integration for two-point boundary value
problems on the ray
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Abstract

We continue our study of the construction of numerical methods
for solving two-point boundary value problems using Green’s func-
tions, building on the successful use of product integration to achieve
the convergence expected of Gauss-type quadrature schemes. We in-
troduce refinements such as the use of cardinal basis functions to elim-
inate the need for a transformation from the ordinates to the expan-
sion coefficients. For problems on the ray, we algebraically map the
ray to a segment, and there use (cardinal) Legendre polynomials for
interpolation and Gauss’s rule for quadrature. Numerical examples
(the heat and Burgers equations) demonstrate the applicability of the
method to problems on the ray, particularly for the sequence of two-
point boundary value problems arising from constant time-stepping
for parabolic evolution problems; nonlinear terms, as in the Burgers
equation, present no special difficulty.
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1 Introduction

The solution of a linear two-point boundary value problem generally has a
Green’s integral representation [7, pp. 254-257; e.g.]; for example,

u(z) = A uge(x) = f(2), (1)
for u ~ 0 as  — oo and u(0) or u,(0) specified, respectively, has solutions
u(z) = u(0)e™* —1—/ % {e_’\‘x_ml‘ — e_)‘(“m/)} f(z')da', (2a)
0

u(e) = W ey /0 ) % {etiemsl oMot pahy !, (2b)
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provided the forcing function f is such that the integrals converge.

Here we continue our development [12] of numerical methods for two-point
boundary value problems based on this representation of the solution. Al-
though the basic approach is in principal applicable to unbounded intervals,
all the examples in the earlier work dealt with finite intervals, and unbound-
edness does pose some technical difficulties; for example, the integral of the
Green’s function G with the force distribution f,

b
/ G(z,2") f(z')da’, (3)
immediately becomes improper. Here we focus on the ray 0 < = < oo,
as it occurs in a number of models arising in hydrodynamics—buoyancy-

driven [11] and aerodynamic boundary layers, and vertical infiltration of
moisture in soil [3]. We also describe recent refinements to the method.

1.1 Constant time-stepping for parabolic evolution

The trapezoidal rule [9, pp. 15, 250] reduces the parabolic problem

uy = Lu, (4)
to the sequence of two-point boundary value problems
At = f*, (5)
where
A=1- %E, (6)
fr= (1 + %E) ut Tt (7)

and the k superscript means at time t = kAt . For the heat equation with
constant thermal diffusivity v, Lu = vu,, and each time-step is (1) with
N =2/vAt.



2 The method C37

1.1.1 Explicit time-stepping for nonlinear terms

Nonlinear terms on the right-hand side of (4) can be integrated explicitly; for
example, the second-order Adams—Bashforth scheme [9, p. 41] converts u; =
Lu+ Nu again to Au* = f* but with f* in (7) augmented by £t(3NuF~! —
NuF=2); that is,

(1-50) = (1 5] et —aty

2 The method

As pointed out earlier [12], the primary difficulty in using (3) for numerical
evaluation of the solution is that the Green’s function is not smooth over the
ridge ’ = x; if the coefficients are smooth and the equation is of order k, the
Green’s function only has & — 2 continuous partial derivatives with respect
to z [7, p. 255; e.g.]. This lack of smoothness carries over to the integrand
of (3) and prevents, for example, Gaussian integration from achieving its
usual rapid convergence. The basic remedy is to split the integral (3) at
=

b T b
/G(a:,x')f(m’)da:':/ G(x,a:')f(x')dx'—l—/ Gz, ) f(z")da". (9)

We assume that G is known and can be evaluated anywhere, but that in
general we will only have incomplete knowledge about f, say because, as
in (7), it is only computed from approximate solutions at previous time
steps.

Say we want to approximate (9) at a set of primary abscissae,

{rita<m <x9<-- <z, < b}, (10)
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using quadrature rules. Note that each of these 2n integrals has a different
domain, so that the quadrature weights and abscissae will depend on the
subscript ¢; that is, on the point at which Green’s integral is being evaluated.
If f is only known at the primary abscissae (10), evaluating the quadrature
rules will require interpolation onto certain secondary abscissae.

Say, for the set of primary abscissae (10), we have the sampling functions
{¢;}I, that can be evaluated anywhere with the property that ¢;(x;) = d;; —
that is, ¢;(z;) = 1 if j = i and zero otherwise—then the function f can be
interpolated given its ordinates with

flo) = Z ¢;(z) f(x;), (11)
and (9) can be approximated by the product integration formula [12]
b
[ Glanan @) d = 3 g5 (w), (12)
@ J

where

gy = ) [whGlai, 2l (wh) + wiG e aff)e; ()] . (13)
k

in which the wk and z are the kth weight and abscissa for the quadrature
rule on the left subinterval from a to x;, and similarly for wk and z£ for the
right subinterval from z; to b.

In summary, the method is: for a given interval, choose the primary
abscissae in (10), the left and right quadrature rules in (13), and the sampling
functions in (11), and evaluate the latter at the secondary abscissae. For a
given differential operator, find the Green’s function and evaluate it for = at
the primary abscissae and 2’ at the secondary abscissae to form the matrix
of coefficients in (13). For a given forcing function, multiply its column of
ordinates by the matrix of coefficients, as in (12).
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The remainder of this section covers good choices for the primary abscis-
sae (§2.1) and quadrature rules (§2.2), and reliable routines for interpolating
the sampling functions at the secondary abscissae (§2.3).

2.1 Primary abscissae

The primary abscissae should be chosen so that the ordinates there represent
the function well; for example, for interpolation. For finite intervals, it is
well known that equally spaced points lead to poor interpolants; Chebyshev
and Gauss points work much better [1]. However, for the ray, polynomial
interpolation is inappropriate if the function is supposed to decay (to zero or
a constant) far from the origin, since no polynomials beyond the first degree
do this.

An alternative is to map the ray to a segment and use polynomial inter-
polation there; for example, to —1 < ¢ < 1 using (for some L > 0; L =1

hereafter) [6]

r— L 1+t
e =L —. 14
Hz) x+ L’ z(?) 1—t (14)

We take the primary abscissae as the Gauss points in —1 <t < 1.

2.2 Quadrature rules

Another difference in problems on the ray from those on finite segments is
that the split Green’s integral (9) requires quadrature rules for both finite
segments (a < 2’ < x;) and right-unbounded segments (z; < ' < 00).

Gauss’s rule, fj1 f()dt = >, qrf(tk), can be used for both finite and
right-infinite intervals using affine and algebraic plus affine mappings;

/ ) dat = S wh f(ah), / ) de! = S whf@R),  (15)
0 k T; k
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where
L Tigk R 2Lqk
Lo — i - 16
Wi 2 ) Wi (1 _ tk)2 ) ( )
St +1 1+t
k

Although they are tabulated, the Gauss weights and abscissae were here
conveniently computed from the Jacobi matrix [10].

2.3 Evaluating the sampling functions

If the primary abscissae (10) go under the mapping (14) to t; = t(z;), and
the ¢;(t) are their sampling polynomials, then a function f(z) on 0 < z < 0o
can be stably interpolated on —1 < ¢ < 1 using the barycentric formula [1]

where w; = [ H (tx —tj)] : (19)

The sampling polynomials, having the property ¢;(¢;) = ¢;;, and being iden-
tical to their interpolants, can be evaluated at an arbitrary t as

w; (t) w;
A h (t) = .
S wom(D) where w,(f) = =

¢;(t) = (20)

3 Examples

The method developed in §2 has been implemented in GNU Octave [5].
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Fi1GURE 1: Convergence of the present method and Laguerre collocation
for the two-point boundary value problem u,, — u = —2e™* with boundary
conditions u(0) = u(oco) = 0.

3.1 A simple example

For A = 1 and f(z) = 2e™*, the solution of (1) satisfying u(0) = 0 is
u(z) = ze~*. The convergence of the method is excellent: the logarithm of
the error (assessed as the maximum absolute error at the abscissae in this
example) decreases almost linearly with n, as shown in Figure 1.

Moreover, the method seems to remain stable as n increases; something
which cannot be said of another spectral-type approach: ordinate-based pseu-
dospectral differentiation matrices [14] based on generalized Laguerre poly-
nomials [11]. As also shown in Figure 1, the collocation method converges
faster for n < 30 but is not stable; the error increases up to n = 124, with
the errors exceeding those for the present method for n > 100. The collo-
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cation method fails for n > 125 as the differentiation matrices become so
ill-conditioned as to be numerically singular. This drawback of Laguerre col-
location is well known: indeed, Iranzo & Falqués [8] reported that it was only
‘possible to apply it reliably up to N =19’

3.2 Development of anabatic wind

The development of the buoyancy layer on an evenly heated vertical wall in
a stratified fluid of unit Prandtl number is governed by [13]
20, = Vg + 2T, (21a)
2T, =T, — 20, (21b)

subject to v(0,t) = v(oo,t) = T'(c0,t) = v(x,0) = T(x,0) = 0 and 7,(0,t) =
—1. The wall temperature evolves as

7(0,¢) = 2C <\/2t/7t> —sint/\/ni)2,

where C(z) is the Fresnel cosine integral [13]. We solved this using the
explicit scheme of §1.1.1 to uncouple v and T in (21).

The derivatives on the right-hand sides were computed using pseudospec-
tral differentiation matrices. The kth derivative of the interpolant (11) at

o Fw) = 6w s, )

that is, the product of the kth pseudospectral differentiation matrix with
coefficients gbgk)(mz) and the column of ordinates f(x;). Algorithms for con-
structing differentiation matrices are described by Weideman & Reddy [14].

The error in 7°(0,1) (Figure 2) shows rapid spatial convergence, with the
error dominated for sufficiently large n by the second-order time-stepping
(with the n required increasing with decreasing At).
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F1GURE 2: Convergence in n and At of the method for the example of §3.2.
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FIGURE 3: Surface value following surface flux in the Burgers problem (§3.3).
3.3 Vertical moisture infiltration through soil

The explicit time-stepping of §1.1.1 also extends the method to quasilinear
problems, such as the Burgers equation with surface flux

Up = Vlgy — 20y , (0 < x) (23a)
u, —u® = —g(t), (x =0) (23b)

which models vertical infiltration of moisture through soil [3].

The time-discretized version (8) of (23a) is

uk — —Vﬁtuk =uf 4 Vﬁt Rl At (3 b=yt uk’Qu';’Z) . (24)

The nonlinear term in (23b) is extrapolated from the last two values, to
retain second-order accuracy in At, so the discrete surface condition for (2b)
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1S

b (0) = {20F71(0) — uF2(0)}” — g(kAL). (25)

Here we solve for g(t) = sint, as in a published finite difference study [2].
Figures 3—4 compare the value at x = 0 with the exact solution [2, 4]

u(0, 1) \/Wr / gUus)elts)ds oy e e(t) Eexp{ /0 "0(s) ds} (26)

1—3

which is accurately evaluated using a Gauss—Jacobi rule [10]. Again, rapid
spatial and second-order temporal convergence is attained (Figure 4).

4 Conclusion

Green’s functions can be used to solve two-point boundary value problems on
the ray by splitting the integral along the ridge of the Green’s function and
using product integration with, for example, cardinal Legendre polynomials
algebraically mapped to the ray. The method is effective when many right-
hand sides are to be solved for the same ordinary differential operator; for
example, as in constant time-stepping. The method converges rapidly and
appears to be more stable than Laguerre collocation.
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