References
- http://www.octave.org
-
C. E. Grosch and S. A. Orszag.
Numerical solution of problems in unbounded regions: Coordinate
transforms.
J. Comput. Phys., 25:273--296, 1977.
MathReview:0488870 http://www.ams.org/mathscinet-getitem?mr=0488870
-
E. L. Ince.
Ordinary Differential Equations.
Dover, New York, 1956. MathReview:0010757 http://www.ams.org/mathscinet-getitem?mr=0010757
-
V. Iranzo and A. Falques.
Some spectral approximations for differential equations in unbounded
domains.
Comput. Methods Appl. Mech. Engrg, 98(1):105--126, 1992.
MathReview:1172676 http://www.ams.org/mathscinet-getitem?mr=1172676
-
J. D. Lambert.
Computational Methods in Ordinary Differential Equations.
Wiley, London, 1973.
MathReview:0423815 http://www.ams.org/mathscinet-getitem?mr=0423815
-
D. P. Laurie.
Computation of Gauss-type quadrature formulas.
J. Comput. Appl. Math., 127:201--217, 2001.
MathReview:1808574 http://www.ams.org/mathscinet-getitem?mr=1808574
- G. D. McBain and S. W. Armfield.
Linear stability of natural convection on an evenly heated
vertical wall. In M. Behnia, W. Lin, and G. D. McBain,
editors, Proceedings of the Fifteenth Australasian Fluid Mechanics Conference. The University of Sydney. Paper
AFMC00196.
http://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00196.pdf
-
G. D. McBain and S. W. Armfield.
Two-point boundary value problems, Green's functions, and product
integration.
ANZIAM J., 46(E):C245--C259, 2005.
http://anziamj.austms.org.au/V46/CTAC2004/Mcba
-
A. Shapiro and E. Fedorovich.
Unsteady convectively driven flow along a vertical plate immersed in
a stably stratified fluid.
J. Fluid Mech., 498:333--352, 2004.
doi:10.1017/S0022112003006803
- J. A. C. Weideman and S. C. Reddy.
A Matlab differentiation matrix suite.
ACM Trans. Math. Software, 26(4):465--519, 2000.
MathReview:1939962 http://www.ams.org/mathscinet-getitem?mr=1939962
-
J.-P. Berrut and L. N. Trefethen.
Barycentric Lagrange interpolation.
SIAM Rev., 46:501--517, 2004.
MathReview:2115059 http://www.ams.org/mathscinet-getitem?mr=2115059
-
G. Biondini and S. de Lillo.
Semiline solutions of the Burgers equation with time dependent flux
at the origin.
Phys. Lett. A, 220:201--204, 1996.
MathReview:1406959 http://www.ams.org/mathscinet-getitem?mr=1406959
-
B. E. Clothier, J. H. Knight, and I. White.
Burgers' equation: Application to field constant-flux infiltration.
Soil Sci., 132(4):99--261, 1981.
-
J. Davoudi and S. Rouhani.
PDFs of the Burgers equation on the semiline with fluctuating
flux at the origin.
Phys. Lett. A, 257:158--164, 1999.
doi:10.1016/S0375-9601(99)00285-6