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Abstract

We present an approach for modelling the transport of pollution
within a groundwater aquifer. The model is based on vertical discreti-
sation of the aquifer into a number of horizontal layers. The approach
can be used in a variety of situations. In particular, aquifers with lenses
and phreatic surfaces are discussed. The use of the model is illustrated
with examples including a comparison with experimental field data
and the use of a second transported substance for remediation of the
pollution.
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1 Introduction

There is a long history of study of groundwater transport in porous media [8,
10, 7, 9]. The subject remains topical, with continuing concern about the
management of these resources. Our models for pollutant transport are
founded on the assumption that the natural layers present in aquifers are
relatively homogeneous [15, 16, 2, 3, 4, 5, 6, 1]. Here, we assemble formulae
with which to model a variety of circumstances. We present examples that
illustrate the effectiveness of the model in several different situations.

2 Groundwater flow in an aquifer

Our models divide the vertical profile of an aquifer into N thin homogeneous
horizontal layers. This is partially motivated by the physically distinct strata
created by geological formation. However, natural strata may be modelled
using multiple model layers for more vertical detail.
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The physical dimensions of aquifers are disparate. Vertical thickness is very
small in comparison with the horizontal extent or width [9]. We assume
physical properties, such as porosity φ and permeability K, do not vary
significantly with height within a layer. Any vertical differences are represented
by interlayer variation. Layer properties only vary slowly with horizontal
position (x,y). The thickness and height of layers may change provided this
is gradual so that gradients are slight.

We assume the groundwater is isothermal and incompressible and that the
porous structure does not deform with time. Groundwater flow is found using
Darcy’s Law [11] together with the conservation of mass. The Darcy velocity
u and the dynamic pressure P satisfy

u = (u, v,w) = −
K

µ
∇P, where P = p− pd + ρg(z− zd), (1)

µ is dynamic viscosity, ρ is fluid density, g is gravitational acceleration, p is
absolute pressure, z is height, and pd and zd are constant datum values.

A subscript i is used to indicate values for the ith layer. An overbar denotes
vertically averaged properties across the layer thickness hi = zi − zi−1. The
ith layer’s volume flux vector

qi = (qxi
,qyi

,qzi) =

∫zi

zi−1

udz = −
Ki

µ

∫zi

zi−1

∇Pdz. (2)

The Darcy velocity normal to the interface from the ith layer to the the i+1th
layer is ri = ui · ∇ {z− zi(x,y)}. Conservation of mass requires ∇ · u = 0
unless there is a source or sink term, such as due to a bore. If we include a
volume flux source term fi, the conservation of mass leads to

∇ · qi = ri−1 − ri + hifi. (3)

For many modelling situations fi = 0 at most, or perhaps all, locations.

Differentiating hiPi =
∫zi
zi−1

P(x,y, z)dz, and using equation (1),

hi

∂Pi

∂x
= −

µ

Ki

hiui + (Pi − Pi)
∂zi

∂x
− (Pi−1 − Pi)

∂zi−1

∂x
, (4)
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where Pi is the pressure at zi. Thus, within the ith layer, the horizontal
x-component of volume flux per unit width

qxi
= hiui =

Ki

µ

[
−hi

∂Pi

∂x
+ (Pi − Pi)

∂zi

∂x
− (Pi−1 − Pi)

∂zi−1

∂x

]
. (5)

The horizontal y-component is similar. The vertical component

qzi = hiwi =
Ki

µ
(Pi−1 − Pi). (6)

Suppose that the horizontal Darcy velocity (u, v) has magnitude U. Set
ε = h/L as the ratio of thickness h = zN − z0 and horizontal lengthscale
L. For positions without source terms, ∂w/∂z = −∂u/∂x − ∂v/∂y, by
conservation of mass. Considering the magnitude of terms, w is order εU
and, from equation (6), P’s vertical variation is order (µ/K)hεU. Hence the
last two terms in equation (5) are of order ε2 smaller than the earlier terms
and are ignored [3]. Also, dynamic pressure does not vary significantly with
height and we replace subscripted values with P. The total volume flux per
unit width

q(x,y) =

N∑
i=1

qi = −
1

µ

N∑
i=1

Kihi∇P. (7)

If an interface (z = zi) is impervious we have ri = 0. In particular a confined
aquifer has impervious top and bottom surfaces r0 = rN = 0. Alternatively,
there may be a phreatic top surface or a body of water such as a stream or
lake may occupy the top surface [5]. By conservation of mass, if there are no
sources or sinks or transmission across top or bottom surfaces of the aquifer,
then ∇ · q = 0.

Lenses A lens is a localised region where the physical medium properties
differ from those in the surrounding aquifer. As before, interface slopes are
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gradual, so the lens thickness grows slowly inwards from zero at its edges.
To model the lens, or a similar gradual vanishing of a physical layer within
our layer-model, we allocate a set of layers to the lens. Their thicknesses are
chosen as appropriate within the horizontal extent of the lens but everywhere
else we take a negligible value δ > 0. This provides an accurate model in the
limit δ→ 0 while maintaining the number of layers [4].

Phreatic aquifers In a phreatic aquifer there is a free top surface z = zt,
the phreatic surface, that gradually decreases in height in a downstream
direction. At the phreatic surface the absolute pressure is approximately
constant atmospheric pressure patm and so, from equation (1),

P = patm − pd + ρg(zt − zd) and ∇P = ρg∇zt, (8)

and the specific discharge along the surface

us = −
Knρg

µ

dzt

ds
, (9)

where n 6 N is the number of the layer currently containing the phreatic
surface. The value of n varies with horizontal position (x,y). The slope of a
phreatic surface is usually of order 0.001 to 0.01 [10] and we make the Dupuit
assumption [12] replacing surface distance s with horizontal distance within
the derivative. From equations (7) and (8) we obtain the total volume flux

q(x,y) = −
ρg

µ

(
n−1∑
i=1

Kihi + Kn(zt − zn−1)

)
∇zt. (10)

The phreatic surface is obtained from the conservation of mass. If there are
no fluid sources or sinks

∇ ·

[(
n−1∑
i=1

Kihi + Kn(zt − zn−1)

)
∇zt

]
= 0. (11)
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3 Pollutant transport and alleviation

Now consider a pollutant of concentration c(x,y, z, t) (mass per unit volume of
fluid) that is transported within the groundwater by advection and dispersion
(through mechanical mixing and molecular diffusion). It is assumed that the
pollutant does not affect the flow itself. The model [15] uses a Fickian-type
dispersion with pollutant flux qc = cq−φD∇c, with D the dispersion tensor
and φ the porosity of the aquifer. By conservation of pollutant mass

φ
dc

dt
= −∇ · qc + φC− φγc, (12)

where the final two terms, involving C and γ, respectively, allow for the
addition or removal of pollutant. We align the x-direction with the direction
of the groundwater flow. In each layer we assume that the diagonal entries of
the dispersion tensor Dxi, Dyi and Dzi can be treated as constant, and that
the vertical variation of concentration is modest and thus approximated by
the mean concentration ci(x,y, t). Equation (12) becomes [16, 6]

φihi

∂ci

∂t
=

∂

∂x

[
−qxici + φihiDxi

∂ci

∂x

]
+
∂

∂y

[
−qyici + φihiDyi

∂ci

∂y

]
+r+i−1ci−1 + r

−
i−1ci + r

+
i ci + r

−
i ci+1

+τi−1(ci−1 − ci) + τi(ci+1 − ci) + φihifCi − φihiγici, (13)

where τi is the interlayer dispersive transfer coefficient given by

1

τi
=

hi

2φiDzi

+
hi+1

2φi+1Dzi+1

, (14)

r+i = (ri+ |ri|)/2 and r−i = (ri− |ri|)/2. The function fCi is a layer-thickness-
averaged pollution source term at position (x,y) in layer i. The form of the
averaged removal coefficient γi depends on how the pollutant is removed. If
we assume that pollutant is adsorbed onto the porous matrix itself and that
this does not become saturated then we could treat γi as a constant.
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Figure 1: Pollutant concentration contours: (Top) Homogeneous aquifer,
(Bottom) Aquifer with lens. (Left) Time 4 hours, (Right) Time 10 hours [1].

A special case of pollution removal is when the pollutant is removed by
another substance that is also transported by the groundwater flow [6, 5].
This remediation agent, which might be a strong oxidiser, can be injected
downstream from a pollution event. The remediation agent has averaged
layer concentration denoted ai, source term fAi and degradation rate kA. In
equation (13), the removal term has the form −φihikCaici, i.e. γi = kCai,
where kC is the rate of degradation of pollutant due to the interaction with
the remediation agent [6]. The remediation agent itself is governed similarly
by equation (13), but with ai, fAi and kA replacing ci, fCi and kC.

4 Illustrations

The effect of lenses We consider two aquifers, both having total volume
flux per unit width 0.1m2h−1 travelling in the x-direction, porosity φ = 0.1
and dispersion coefficients Dx = 0.03 and Dz = 0.005 m2h−1. There is no
y-direction variation in the aquifers or the pollutant release, and we use a
two-dimensional model based upon equations (7), (13) and (14) with multiple
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sub-layers.

Figure 1 shows the aquifers four and ten hours after an instantaneous release
of 1 kgm−1 pollutant per unit width in the layer containing (x = 2, z = 1.4)
at the position of the red rectangle. The pollutant concentration contours
in all four plots are plotted on an equally-spaced logarithmic scale 10−3.00,
10−2.75, 10−2.50, . . . , 10−0.00 kgm−3. The first aquifer is homogeneous with
K = 10−7 m2 and the second contains a lens with K = 10−8 m2 and elsewhere
has K = 10−7m2. The mean dynamic pressure at the lateral boundaries of
the two aquifers is different to maintain the same volume flux. In the lower
plot on the left, four hours after release, the point of maximum pollutant
concentration has only just reached the left end of the lens. As the lens
has lower permeability, the fluid and advected pollutant travels more slowly
within it. This makes the lens initially appear more resistant to the pollutant
and the rising contour lines lag behind those for similar x-distances in the
main aquifer. Here, there is a net dispersion of pollutant into the lens from
above and below. In the lower plot on the right, after ten hours, the same
lagging effect can be seen in the rising contour lines on the right end of the
lens. However, on the left end of the lens the falling contours also lag behind
similar x-distances in the main aquifer. The slow fluid speeds within the lens
are trapping pollutant within it. While slowly advecting horizontally through
the lens, the pollutant will leak up and down into the main aquifer though
dispersion. This will continue for some time after most of the pollutant has
advected through the neighbouring higher permeability region.

A comparison with experimental field data The model is fitted to
experimental field data collected at the Canadian Forces Base in Borden,
Ontario [14]. For this a 12m3 solution containing several tracers was injected
over a 14.75-hour period at nine closely spaced well sites within a phreatic
sand aquifer. The tracers included a mass 10.7 kg chloride ions and these are
modelled here. The aquifer is relatively homogeneous with mean hydraulic
conductivity ρgK/µ = 7×10−5 m s−1, hydraulic head gradient in the direction
of flow ∇zt = −0.0043, and measured total porosity φtot = 0.33. The
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Figure 2: The vertically-averaged chloride concentration profile at 1, 85, 462,
and 647 days after injection: (Left) Experiment [14], (Right) Model [1].

longitudinal dispersivity αL = Dx/|q| has been estimated to be 0.49m [13].

The groundwater flow is assumed uniform and unidirectional. Using the
measured values, taking φ = φtot, and applying equation (10), with a single
layer, the model tracer velocity q/(zt − z0)φ has magnitude 0.079mday−1.
This is slightly less than the measured value of 0.091mday−1. However, the
difference can be attributed to the effective porosity being lower than the
total porosity and errors in the estimated data from the measurements [14].

Figure 2 compares experimental data with the model, using equations (10)
and (13). The values of effective porosity φ and transverse dispersivity
αT = Dy/|q| have been fitted as parameters. The observed chloride ion
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concentration after 1, 85, 462 and 647 days are shown by contours on the
left-hand side of Figure 2 [14]. These have been normalised by dividing by
the maximum concentration. Model results, for the same times and similarly
normalised, are shown on the right-hand side of the figure. The effective
porosity φ is set at 0.28. This is reasonably comparable with the total porosity
value φtot = 0.33 but is in agreement with the measured tracer velocity. The
transverse dispersivity αT is set at 0.05m. This can be compared with the
longitudinal dispersivity αL = 0.49m. The ratio αT/αL can take a wide range
of values [10]. The value for the model here is comfortably within this range

Pollution remediation Consider a confined aquifer of total thickness 10m
with three level strata of equal thicknesses, consisting of sand and gravel
K = 10−9m2 sandwiched between two strata of clean sand K = 10−10m2.
The strata are each divided into five model sub-layers also of equal thickness.
The total groundwater flux per unit width is 10m2 day−1 in the x-direction.
There is no variation with y as sources are assumed to be extended in this
direction. Throughout the aquifer, the dispersion coefficients Dxi = 0.2 and
Dzi = 0.06m2 day−1 with porosity φ = 0.1. An instantaneous release of
1 kgm−1 pollutant per unit width occurs in the third model sub-layer from
the top of the aquifer at x = 10m. The pollutant is advected, meanwhile
dispersing horizontally and vertically. Pollutant entering the more permeable
middle stratum is advected at a higher speed [6]. Some of this pollutant
later disperses back into the upper stratum. We explore the effect of an
instantaneous release of 1 kgm−1 remediating agent per unit width in a
layer downstream of the original pollutant release and two days later. The
degradation rates kC = 2 and kA = 1 (kg m−3)−1day−1.

Equations (7), (13) and (14) apply. These indicate that qxi, uxi, Ki and
the speed of advection in a layer are all proportional. Hence the flow in the
central stratum is ten times as high as that in the other strata. Further, the
speed of advection in the top stratum is found to be 2.5mday−1. In Figure 3,
various scenarios are illustrated with two graphs per scenario. The upper plot
for each of the scenarios shows pollutant mass still present in the aquifer (red),
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pollutant removed by the remediating agent (green) and pollutant that has
flowed past the downstream boundary of the aquifer x > 100m (blue). These
are plotted against time. At any time the sum of these masses is equal to the
released mass of pollutant (1 kgm−1). The lower plot for each of the scenarios
shows pollutant concentration profiles 15days after pollutant release. The
contours are plotted on an equally-spaced logarithmic scale 10−4.000, 10−3.725,
10−3.450, . . . , 10−0.150 kgm−3. The site of pollutant release is shown with a
red rectangle and that of remediation agent release with a green rectangle.
In the basic scenario the remediation agent is released 5m downstream of
the site of pollutant release. In other scenarios the remediation agent is
released one sub-layer (2

3
m) higher, one sub-layer lower, 2m upstream and

2m downstream from the previous position or it is not released at all.

The most effective pollutant removal is in the original scenario. In this
scenario the remediation agent is released at the heart of the pollution plume
at the point where the pollutant would advect had there been no dispersion.

5 Concluding comments

We have modelled pollutant transport in a groundwater aquifer. The models
build upon the assumption that the aquifer is constructed from homogeneous
layers. We collect together several equations involved. To begin the modelling
process, initially, the fluid flow is found (Section 2). Then the transport of the
pollutant, by advection and dispersion, is calculated (Section 3). In Section 4,
the model equations have been used for three different illustrations. First,
we show the effect of a lens, or region of different permeability, upon the
spread of pollutant. Then, using realistic parameters, the model is fitted to
experimental field data. It captures the qualitative features of the pollutant
transport. Finally, we illustrate the effect of a remediating agent released
to counteract a pollution event and the effect of different release points is
explored. There is further discussion of such models and additional illustration
in our previous work [15, 16, 2, 3, 4, 5, 6, 1].
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