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Abstract

The paper deals with numerical solving nonlinear integro-parabolic
problems based on an alternating direction implicit (ADI) scheme.
A monotone iterative ADI method is constructed. An analysis of
convergence of the monotone iterative ADI method is given.
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1 Introduction

We consider the nonlinear integro-parabolic problem

ut − (ux1x1 + ux2x2) + f(x, t,u) +

∫ t
0

g∗(x, t, s,u(x, s))ds = 0, (1)

(x, t) ∈ ω× (0, T ], ω = {0 6 xν 6 lν,ν = 1, 2},

u(x, t) = 0, (x, t) ∈ ∂ω× (0, T ], u(x, 0) = ψ(x), x ∈ ω,

where x = (x1, x2) ∈ R2, ∂ω is the boundary of ω, and the functions f and
g∗ satisfy the Lipschitz continuity condition. Various reaction-diffusion-type
problems in chemical, physical and engineering sciences are described by
problem (1) [5].

Alternating direction implicit (adi) methods are very efficient methods for
solving two or three dimensional parabolic problems. At each time-step, the
adi method reduces two or three dimensional problems to a succession of
one dimensional problems, and, usually, one needs only to solve a sequence
of tridiagonal systems. We have previously constructed a nonlinear adi
scheme, based on the Douglas–Rachford adi scheme [2], for solving nonlinear
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parabolic problems [1]. In this paper, we extend the monotone adi approach
of Boglaev [1] to nonlinear integro-parabolic problems. Our iterative scheme
is based on the method of upper and lower solutions and associated monotone
iterates. We formulate a nonlinear adi scheme for the numerical solution
of (1). A monotone iterative adi method for the nonlinear adi scheme is
then given. Convergence analysis of the monotone adi method is discussed,
before finally presenting the results of numerical experiments.

2 The monotone adi method

2.1 The statement of the iterative adi method

Let i = (i1, i2) be a multiple index with iν = 0, 1, . . . ,Mν, ν = 1, 2. Introduce
the uniform mesh

ωh = {xi = (xi1 , xi2), iν = 0, 1, . . . ,Mν,hν = lν/Mν,ν = 1, 2}, (2)
ωτ = {tk = kτ, 0 6 k 6 N, t0 = 0, tN = T },

where hν, ν = 1, 2, and τ are, respectively, space and time steps. When
no confusion arises, we write i ∈ ωh and k ∈ ωτ, instead of, respectively,
xi ∈ ωh and tk ∈ ωτ. Set

ui,k ≡ u(i1h1, i2h2,kτ), fi,k(ui,k) ≡ f(i1h1, i2h2,kτ,ui,k).

We approximate the integral in (1) by the finite sum g based on the Riemann
sum (the rectangular rule)

gi,k(ui,k) =

k∑
l=1

τg∗(i1h1, i2h2,kτ, lτ,ui,l).

For solving (1), consider the nonlinear two-level implicit difference scheme

τ−1 [Ui,k −Ui,k−1] + LhUi,k +Φi,k(Ui,k) = 0, i ∈ ωh, k > 1, (3)
Ui,k = 0, i ∈ ∂ωh, k > 1, Ui,0 = ψi, i ∈ ωh, Φi,k ≡ fi,k + gi,k.
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The difference operator Lh = Lh1 + Lh2 is defined as follows

LhνUi,k = h−2
ν [2U(xi, tk) −U(xi + hνeν, tk) −U(xi − hνeν, tk)], ν = 1, 2,

where eν is the unit vector in the xν-direction, ν = 1, 2.

On each time level k > 1, introduce the linear difference problem

(Lh + (τ−1 + ci,k))Wi,k = Ξi,k, i ∈ ωh, Wi,k = 0, i ∈ ∂ωh, (4)

where ci,k > 0, i ∈ ωh and Ξi,k, i ∈ ωh is an arbitrary mesh function. We
formulate the maximum principle and give an estimate to the solution of (4).

Lemma 1. (i) If a mesh function Wi,k satisfies the conditions

(Lh + (τ−1 + ci,k))Wi,k > 0 (6 0), i ∈ ωh, Wi,k > 0 (6 0), i ∈ ∂ωh,

then Wi,k > 0 (6 0) i ∈ ωh.

(ii) The following estimate to the solution to (4) holds

‖Wk‖ωh 6 max
i∈ωh

|Ξi,k|

ci,k + τ−1
, ‖Wk‖ωh ≡ max

i∈ωh
|Wi,k|. (5)

The proof of the lemma has been previously presented by Samarskii [6].

For solving (3), we use the nonlinear adi scheme

L1U
∗
i,k = τ−1Ui,k−1, i ∈ ωh, (6)

U∗(0,M1),i2,k
= 0, i2 = 1, . . . ,M2 − 1,

L2Ui,k = τ−1U∗i,k −Φi,k(Ui,k), i ∈ ωh,
Ui1,(0,M2),k = 0, i1 = 1, . . . ,M1 − 1,

Ui,0 = ψi, i ∈ ωh, k > 1, Lν ≡ Lhν + τ
−1, ν = 1, 2.

We have to solve M2 − 1 linear systems in the x1-direction and M1 − 1
nonlinear systems in the x2-direction, for, respectively, U∗i,k and Ui,k.
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Remark 2. The class of adi methods belongs to the class of splitting meth-
ods which have a number of generic forms, e.g., splitting linear terms from
nonlinear terms, splitting terms corresponding to different physical processes,
splitting x1-direction from x2-direction (dimensional splitting is the loca-
tion of adi methods), spitting a large domain into smaller pieces (domain
decomposition) [3, 4].

Mesh functions Ũi,k, Ũ∗i,k and Ûi,k, Û∗i,k are ordered upper and lower solutions
of (6), if they satisfy Ũi,k > Ûi,k, Ũ∗i,k > Û∗i,k, i ∈ ωh, k > 1, and

L1Û
∗
i,k −

1

τ
Ûi,k−1 6 0 6 L1Ũ

∗
i,k −

1

τ
Ũi,k−1, i ∈ ωh, (7)

Û∗(0,M1),i2,k
6 0 6 Ũ∗(0,M1),i2,k

, i2 = 1, . . . ,M2 − 1,

L2Ûi,k −
1

τ
Û∗i,k +Φi,k(Ûi,k) 6 0 6 L2Ũi,k −

1

τ
Ũ∗i,k +Φi,k(Ũi,k), i ∈ ωh,

Ûi1,(0,M2),k 6 0 6 Ũi1,(0,M2),k, i1 = 1, . . . ,M1 − 1, k > 1,

We note that in some literature upper and lower solutions are called superso-
lution and subsolution. Assume that f and g∗ satisfy the constraints

∂f

∂u
(x, t,u) 6 c(x, t), 0 6 −

∂g∗

∂u
(x, t,u), (x, t,u) ∈ ω×[0, T ]×(−∞,∞),

(8)
where c(x, t) is a nonnegative bounded function in ω× [0, T ].

For solving (6), we calculate iterates V(n)
i,k , n > 1, by using the recurrence
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formulae

L1V
∗
i,k = τ−1Vi,k−1, i ∈ ωh, V∗(0,M1),i2,k

= 0, i2 = 1, . . . ,M2 − 1, (9)

(L2 + ci,k)Z
(n)
i,k = −Ri,k(V

(n−1)
i,k ), i ∈ ωh,

Ri,k(V
(n−1)
i,k ) ≡ L2V

(n−1)
i,k +Φi,k(V

(n−1)
i,k ) − τ−1

k V
∗
i,k,

Z
(1)
i1,(0,M2),k

= −V
(0)
i1,(0,M2),k

, Z
(n)
i1,(0,M2),k

= 0, i1 = 1, . . . ,M1 − 1, n > 2,

V
(n)
i,k = V

(n−1)
i,k + Z

(n)
i,k , Vi,k = V

(nk)
i,k , Vi,0 = ψi, i ∈ ωh,

where Ri,k(V
(n−1)
i,k ) is the residual of the difference scheme (6) on V(n−1)

i,k ,
Vi,k−1 is an approximation of the exact solution on time level k − 1, nk is
a number of iterative steps on time level k, and ci,k is defined in (8). We
note that, if ∂fi,k

∂ui,k
(V

(n−1)
i,k ) is in use instead of ci,k in (9), the iterative method

becomes Newton’s method. In general, Newton’s method does not possess
monotone property of iterative sequences which is a requirement for their
convergence (see Theorem 4 below, for details).

2.2 Monotone property of the adi method

We introduce the notation

Fi,k(Ui,k) = ci,kUi,k −Φi,k(Ui,k). (10)

Lemma 3. Let Ui,k, Vi,k be two mesh functions such that Ûi,k 6 Vi,k 6
Ui,k 6 Ũi,k, and let (8) hold. Then for k fixed

Fi,k(Ui,k) > Fi,k(Vi,k), i ∈ ωh. (11)

We now prove the monotone property of the iterative method (9).

Theorem 4. Assume that f and g∗ satisfy (8), where Ũi,k and Ûi,k are
ordered upper and lower solutions (7) of (6). Then the sequences {V

(n)

i,k } with
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V
(0)

i,k = Ũi,k and {V
(n)
i,k } with V

(0)
i,k = Ûi,k generated by (9) are, respectively,

ordered upper and lower solutions to (6) and converge monotonically

V
(n−1)
i,k 6 V(n)

i,k 6 V
(n)

i,k 6 V
(n−1)

i,k , i ∈ ωh, n > 1, k > 1. (12)

Proof: Let W∗i,k = Ũ∗i,k − V
∗
i,k, k > 1. From (7) and (9), it follows that

L1W
∗
i,1 > 0, i ∈ ωh, W∗(0,M1),i2,1

> 0, i2 = 1, . . . ,M2 − 1.

By the maximum principle in Lemma 1, it follows thatW∗i,1 > 0, i ∈ ωh. From
here and V

(0)

i,k = Ũi,k is an upper solution, we conclude that Ri,1(Ũi,1) > 0,
i ∈ ωh in (9). From here and (9), we have

(L2 + ci,1)Z
(1)

i,1 6 0, i ∈ ωh, Z
(1)

i1,(0,M2),1
6 0, i1 = 1, . . . ,M1 − 1.

By Lemma 1, it follows that

Z
(1)

i,1 6 0, i ∈ ωh. (13)

Similarly, we conclude that

Z
(1)
i,1 > 0, i ∈ ωh. (14)

From (9), Vi,0 = Vi,0 = ψi, in the notation W(n)
i,k = V

(n)

i,k − V
(n)
i,k , n > 0, we

have

(L2 + ci,1)W
(1)
i,1 = Fi,1(V

(0)

i,1 ) − Fi,1(V
(0)
i,1 ), i ∈ ωh,

W
(1)
i1,(0,M2),1

> 0, i1 = 1, . . . ,M1 − 1,

where F is defined in (10). Since V
(0)

i,1 > V(0)
i,1 , by Lemma 3, we conclude that

the right hand side in the difference equation is nonnegative. The positivity
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property in Lemma 1 implies W(1)
i,1 > 0, i ∈ ωh. From here, (13) and (14),

we conclude (12) for k = 1, n = 1.

We now prove that V
(1)

i,1 and V(1)
i,1 are, respectively, upper and lower solu-

tions (7). Using the mean-value theorem, from (9) we obtain

Ri,1(V
(1)

i,1 ) = −

(
ci,1 −

∂f

∂ui,1
(E

(1)
i,1 )

)
Z

(1)

i,1 + τ
∂g∗

∂ui,1
(Q

(1)
i,1 ),Z

(1)

i,1 , (15)

where V
(1)

i,1 6 E(1)i,1 ,Q
(1)
i,1 6 V

(0)

i,1 . From here, (12) for k = 1, n = 1, (13), (14),
it follows that the partial derivatives satisfy (8). From (8), (13) and (15), we
conclude that

Ri,1(V
(1)

i,1 ) > 0, i ∈ ωh, V
(1)

i1,(0,M2),1
= 0, i1 = 1, . . . ,M1 − 1.

Thus, V(1)
1 (p, t1) is an upper solution. Similarly, we can prove that V(1)

−1 (p, t1)

is a lower solution. By induction on n, we can prove that {V
(n)

i,1 } is a mono-
tonically decreasing sequence of upper solutions and {V

(n)
i,1 } is a monotonically

increasing sequence of lower solutions, which satisfy (12) for k = 1.

From (12) with k = 1, it follows that

Ûi,1 6 V
(n1)
i,1 6 V

(n1)

i,1 6 Ũi,1, i ∈ ωh. (16)

From here and by the assumption of the theorem that Ũ∗i,2 and Û∗i,2 are,
respectively, upper and lower solutions (7), we conclude that Ũ∗i,2 and Û∗i,2
are upper and lower solutions with respect to Vi,1 = V

(n1)

i,1 and Vi,1 = V
(n1)
i,1

L1Ũ
∗
i,2 > τ

−1Vi,1, L1Û
∗
i,2 6 τ

−1Vi,1, i ∈ ωh. (17)

From here and (9), in the notation W∗ = Ũ∗ − V∗, it follows that

L1W
∗
i,2 > 0, i ∈ ωh, W∗(0,M1),i2,2

> 0, i2 = 1, . . . ,M2 − 1.
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By the maximum principle in Lemma 1, we haveW∗i,2 > 0, i ∈ ωh. From here
and V(0)

1 = Ũ is an upper solution, we conclude that Ri,2(Ũi,2) > 0, i ∈ ωh
in (9). The proofs of the inequalities (compare with (13), (14) and (16))

Z
(1)

i,2 6 0 6 Z(1)
i,2 , V

(1)
i,2 6 V

(1)

i,2 , i ∈ ωh,

and the fact that V
(1)

i,2 and V(1)
i,2 are, respectively, upper and lower solutions

are similar to the proofs on time level k = 1. By induction on n, we prove that
{V

(n)

i,2 } and {V
(n)
i,2 } are, respectively, monotonically decreasing and increasing

sequences of upper and lower solutions, which satisfy (12) for k = 2.

By induction on k, k > 1 , we can prove that {V
(n)

i,k } and {V
(n)
i,k } are, respectively

monotonically decreasing and monotonically increasing sequences of upper
and lower solutions, which satisfy (12). We prove the theorem. ♠

2.3 Convergence analysis of the adi method

We assume that f and g∗ satisfy the two-sided constraints

0 < c∗ 6
∂f

∂u
(x, t,u) 6 c∗, 0 6 −

∂g∗

∂u
(x, t,u) 6 q∗, (18)

(x, t,u) ∈ ω× [0, T ]× (−∞,∞),

where c∗, c∗ and q∗ are positive constants. We also assume that

τ < min(
√

1/q∗, c∗/q
∗). (19)

Lemma 5. Assume that f, g∗ satisfy (18) and τ satisfies (19). Then the
nonlinear adi scheme (6) has a unique solution.

We choose the stopping criterion of the adi method (9) in the form

‖Rk(V(n)
i,k )‖ωh 6 δ, (20)
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where δ is a prescribed accuracy, and set up Vi,k = V
(nk)
i,k , i ∈ ωh, such that

nk is minimal subject to (20).

We state Gronwall’s inequality from [7] in the following form.

Lemma 6. Let {wk} be a sequence on nonnegative real numbers satisfying

wk 6 ak +
k∑
l=1

blwl, k > 1,

where {ak} is a nondecreasing sequence of nonnegative numbers, and bl > 0.
Then

wk 6 ak exp

(
k∑
l=1

bl

)
, k > 1.

Theorem 7. Under the assumptions of Lemma 5, for the sequence {V
(n)
i,k },

generated by (9), (20), the following estimate holds:

max
k>1
‖Vk −Uk‖ωh 6 C(T)δ, (21)

where Ui,k is the unique solution to (6).

Proof: We present the difference problem for Vi,k = V
(nk)
i,k in the form

L2Vi,k +Φi,k(Vi,k) − τ
−1V∗i,k = Ri,k(V

(nk)
i,k ), i ∈ ωh,

Vi1,(0,M2),k = 0, i1 = 1, . . . ,M1 − 1.
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From here, (6) and using the mean-value theorem, we get the following
difference problems for W∗i,k = V∗i,k −Ui,k and Wi,k = Vi,k −Ui,k:

L1W
∗
i,k = τ−1Wi,k−1, i ∈ ωh, W∗(0,M1),i2,k

= 0, i2 = 1, . . . ,M2 − 1,

(22)(
L2 +

∂f

∂ui,k
(Ei,k)

)
Wi,k = Ri,k(Vi,k) +

1

τ
W∗i,k − τ

k∑
l=1

∂g∗

∂u
(Qi,l)Wi,l,

i ∈ ωh, Wi1,(0,M2),k = 0, i1 = 1, . . . ,M1 − 1,

where the partial derivatives are calculated at intermediate points, which
lie between Ui,l and Vi,l, 1 6 l 6 k. From here, by using (5), we have
‖W∗k‖ωh 6 ‖Wk−1‖ωh . From here, (18), by using (5) and taking into account
that according to Theorem 4 the stopping criterion (20) can always be satisfied,
we estimate wk ≡ ‖Wk‖ωh from (22) in the form

wk 6 wk−1 + τ
2q∗

k∑
l=1

wl + τδ.

From here and w0 = 0, by induction on k, we prove the inequality

wk 6 kτδ+ τ2q∗
k∑
l=1

(k− l+ 1)wl.

By Lemma 6 with ak = kτδ, k > 1 and bl = τ2ρ(k − l + 1), 1 6 l 6 k, we
get

wk 6 (kτδ) exp

(
τ2q∗

k∑
l=1

l

)
.

From here and taking into account that
∑k
l=1 l 6 k

2/2, kτ 6 T , we prove (21)
with C(T) = T exp(q∗T 2/2). ♠
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3 Numerical experiments

As a test problem, we consider (1) in the form

f = u2, g∗ = −u/(1+ u), ψ = sin(πx1) sin(πx2),

where T = 1 and lν = 1, ν = 1, 2. The following functions Ũi,k = 1, Ûi,k = 0,
i ∈ ωh, k > 1, are, respectively upper and lower solutions. From here, we
have

0 6 fu = 2u 6 2, −g∗u = 1/(1+ u)2 > 0, 0 6 u 6 1.

Thus, we choose ci,k = 2, i ∈ ωh, k > 1, in the iterative method (9).

We discretize the differential problem by the finite difference approximation
on an uniform space mesh with the step size h1 = h2 = h (N = 1/h) and
δ = 10−6 in (20). We compare the monotone iterative adi method with
the iterative method, where we employ the conjugate gradient method with
the preconditioner based on the incomplete LU factorization (ILUCG). In
Table 1, for different values of N, we present execution times (CPU times)
of the monotone iterative adi and iterative ILUCG methods, where τ = h.
The data in the table indicate that the monotone iterative method executes
much faster than the iterative ILUCG method.

Table 1: Numerical results for the test problem.

N 32 64 128 256 512
Tadi(s) 1.61e-1 2.55e-1 1.38e0 1.21e1 9.61e1
TILUCG(s) 8.11e-1 5.78e0 4.76e1 6.10e2 6.41e3
TILUCG/Tadi 5.04e0 2.27e1 3.45e1 5.04e1 6.67e1
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